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1. Introduction.

This report documents the author's research on methodology for the

quantitative justification of time-sequential fire-support allocation

thprocedures. Carl von Clausewitz (1780-1831), the influential 19- century

German military philosopher, said fsee p. 191 of [8]) that if theory caused

a more critical study of war, then it had achieved its purpose. Today in

ththe 20- century this is particularly true within the context of military

operations research for defense planning. General G. I. Pokrovsky (U.S.S.R.)

has similarly stressed (see pp. 12-13 of [27]) the importance of scientific

investigation of military principles. We will accordingly investigate the

principles of fire-support allocation by the consideration of some idealized

problems (see (40], (48]). Although thesp problems are probably too simple

to be taken literally, such analytic invest igations of the optimizat.on oi fire-

sunoort allocation may be used to (1) guide higher resolution studies, (2)

identify cause-effect relationships between the structure of optimal allocation

policies and modelling assumptions, and (3) test the capabilities of proposed

computational methods for time-sequential fire-support allocation optimization

problems (for sxampls, Lagrange dynamic programming (29) for discrete-time

versions of such prc,11ems (see also [22], [26], [47])).

The determination of optimal target allocation strategies for supporting

weapon systems is a major problem of contemporary military operations research.

This prob.am freqtuently arises, for example, in defense planning studies such

as the evaluation of proposed fire-support systems or fire-support mixes (see

[241]) t . The problem is also of interest to the military tactician so that he

t See [48] for a brief discussion between a "primary" weapon system (or infantry)

and a "supporting" weapon system.

SSee Appendix A for a further discussion.



may have a clearer understanding of the circumstances under which enemy

infantry should be engaged by a supporting weapon system (such as artillery)

and those under which "counter-battery" fire is to be preferred. Such tactical

allocation problems are of particular relevance in light of the Navy mission

of fire support (both by ship gunfire a-d by carrier-based air). Another

important related question for defense planners is,"What are appropriate missions

over the course of a campaign for tactical air power?" The answer to this ques-

tion has far-reaching implications for Navy air forces (both carrier-based and

land-based) (and, of course, the Air Force). Recently, the USAF Studies and

Analysis Group has been using quantitative methodology [471 in trying to

answer such questions.

There is interest at present in the Navy and USMC on various aspects

of fire-support allocation and evaluation. Additionally, the problem of

optimal time-sequential fire-support strategies is related to campaign analysis

and optimal campaign strategies. Currently a research project on campaign

analysis (sponsored by OP-96) is underway at NPS, and we have given this work

consideration in performing the research at hand.

In the research reported here on the principles of optimal time-sequential

fire-support allocation we have built upon the previous research of the investi-

gator [34]-[38] who has studied optimal time-sequential tactics for (1) distri-

bution of fire over enemy target types, (2) selection of target type at which

to fire, and (3) regulation of firing rate. By considering several combat

scenarios, insights have been gained into such important questions as:

(1) How should supporting fires by distributed over enemy targets?

(2) How should targets be selected?

(3) Do target priorities change over time?

(4) How do force leve's affect the optimal time-sequential fire-
support policy?
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(5) How do the number of target types and the nature of combat
attrition processes affect the optimal time-sequential fire-
support policy?

(6) How does the nature of the planning horizon (i.e., battle
termiiation conditions) affect the optimal time-sequential
fire-suppe:t policy?

(7) What is the optimal tire-support mix and how is this affected

by tactics?

(8) What are the effects of logistics constraints on such policies?

(9) Bow do the uncertainty and confusion of combat affect optimal
time-sequential fire-support allocation strategies?

(ib) How do command and control capabilities affect the optimal
time-sequential fire-support policy?

In trying to answer the above questlons we have given consideration to the

following factors:

(1) combatant objectives (form of criterion functional and valuation
of surviving forces),

(2) dynamics of the combat attrition process,

(3) weapon system performance characteristics,

(4) termination conditions of conflict,

(5) force strengths and composition,

(6) type of attrition process,

(7) effects of resource constraints,

(8) range capabilities of weapon systems.

Thus, the determination of optimal target allocation strategies for

supporting weapon systems is a major problem of contemporary military operations

research. Accordingly, the objectives of this research are to determine optimal

fire-support strategies in a time-sequential fashion over the course of combat

for several situations of tactical interest and to study the dependence of these

strategies on the nature of the combat model. In this work consideration is

-3



given to the dynamics of combat.t We emphasize the development of explicit

expressions for the optimal fire-support policies here. Such results are

important not only for their own sake but also for testing the capabilities

of proposed computational methods (for example, Lagrange dynamic programming

[29] for discrete-time versions of such problems or the Lulejian successive-

approximation methodology [23], [261).

In the research reported here we have continued our study of the

effects of modelling assumptions on the structure of optimal time-sequential

allocation policies (see [34]-[44]). It is the investigator's opinion (based

on his knowledge of both the open literature and participation in the symposium

on the "State-of-the-Art of Mathematics in Combat Models" (held at General

Research Corporation 14-15 June 1973)) that this topic is at present imperfectly

understood by analysts. We feel that an important aspect of our research has

been its continuity of effort: the author has Lsen considering quantitative

methods for optimizing tactical decisions for five years now, and tqis has

provided valuable perspective for the current research on optimal time-sequential

fire-support strategies. The author has also profitted from numerous discussions

with military officers (both students at NPS and military analysts) on the topic

of optimizing tactical decisions.

2. Research Objectives

The general objective of this research is to develop combat attrition

models and optimization techniques to extend the state-of-the-art for the

t This should be contrasted with essentially all the work reviewed in [24] in

which no consideration is given to the evolution of the course of battle.

*' One can clearly see the dependence of the stru.ture of the optimal time-

sequential allocation policy on model form and model parameters.
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determination f, optimal time-sequential fire-support str-tegies -in various

tactical scenarios. The specific objectives of the initial phase of this

research: are: (1) to determine the optimal time-sequential fire-support

policiea in several situations of tactical interest, (2) to study the dependence

of these policies on the functional form of the model for combat dynamics, (3)

to determine the sensitivity of these policies to the functional form of the

criterion functional, and (4) to develop methodology for the determination of

optimal time-sequential fire-support policies when there are different combat

dynamics in different "phases" of a battle.

3. Review of Previous Work

A rather comprehensive review of combat modelling theories (in particular,

Lanchoster-type models of warfare) and related optimization theories for the

exam-'nation of time-sequential tactical allocation problems is to be found In

the investigator's 1972 NPS technical report (see pp. 21-32 of [35] (see also

[38])). In this section we will give a brief overview of past work on optimizing

fire-support allocations. More detailed reviews (as related to the subject

matter of the appendix in question) are to be found in the appendices of this

report.

The determination of op*1mal time-sequeatial fire-distribution strategies

for supporting weapon systems is a major problem of contemporary military

operations research. Early work was done on this problem at RAND in the late

1940'e Rnd early 1950's (see [12]) and elsewhere (see (1]). Today the problem

of optimal ,ir-war strategies is being extensively studied by a number of

organizations (see, for example, [7], [14], [22], [30], [1,7]). This problem

was extensively discussed in the workshop on optimization techniques add

combat applications at the 1973 Conference on the State-of-the-Art of Hathematics
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in Combat Models (see [28]) at which the principal investigator was an invited

speaker.

Rufus Isaacs considered Arnold Mengel's "War of AtLrition and Attack"

(see !12]) in Isaaca' now classic book on differential games [181. Discrete-

time versions of this problem of the determination of optimal "air-war"

strategies (see also [2], [361, [37]) have been considered by a number of workers

as time-sequential combat games (31, [4], [101 (see also [51, [91). MAther

related problem was considered by Weiss (48], who studied the optimal selection

of targets for engagement by a supporting weapon system. i More recently, Kawara

[20] has studied optimal time-sequential fire-distribution strategies for

supporting weapon systems in an attack scenario which is a variation of the

model considered by Weiss [48]. Other recent work has considered various con-

ceptual and conputational aspects of time-sequential combat games [291, [301,

[31]. References to the numerous contributions in this field of the principal

investigator are to be found in [38] (see also [42], [43)).

4. Research Approach

Our research approach has been to combine Lanchester-type models of

warfare with generalized control theory (i.e., optimization theory for dynamic

systems (see [16], [17])). This research program has been described in more

detail elsewhere [35], [36]. In the initial phase of research reported here

we have examined a sequence of one-sided t time-sequential allocation problems

in order to study the dependence of the optimal fire-support policy on the

nature of the combat model and on the quantification of combatant objectives.

tSee [44], however, for a justification of the optimality of strategies deter-
mined by Weiss (48]. A general solution algorithm is also presented in this
paper [44].

In other words, only one of the combatants is free to choose his time-
sequential fire-support allocation policy.
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Many of these problems represnt various versions of the same basic fire-

support situation, and many of these optimal control problems have been

solved in de:ail.t The structure of optimal time-sequential fire-support

allocation strategies has been ctudied by considering the solutions for

specific optimization problems and comparing and contraating these. In this

work we have used existing methodologies for the modelling of supporting

weapon systems (see [321, [451 (also p;. 141-162 of [61)).

In future work, we would extend these results to two-sided optimization

problems (i.e., time-sequential combat games).tt Additionally, the effects

of the information structure (e.g., whether or not eny force levels are

modelled as being known with certainty) and of modelling "breakpoints" (see

[15], [33], [38], [491) on optimal time-sequential fire-support strategies

should be examined in the future.

5. Guided Tour of the Appendices

The organization of this report is to discuss results in general terms

in the main body and to leave supporting details for the appendices. Accord-

ingly, we summarize in this section the work which is contained in the appen-

dices and explain why this work was done. The results reported here may be

considered to be extent'ions of our previous work on optimal time-sequential

fire-distribution strategies [34]-138]. Moreover, the work at hand lays the

foundation for more extensive work on the quantitative analysis of time-

sequential fire-support allocation and on applications of generalized co.tcol

theory to problems of military operations research.

Such results are useful for evaluating computational algorithms (see above).

tt R. Isancs [19] has emphasized, however, the difficulties attendant with the

transition from one-sided to two-sided dsnamic optimization problems.
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In Appendix A we consider a sequence of simplified models in order

to study the effect of the nature of dynamic combat Interactions on optimal

time-sequential fire-support allocation policies-and gain insights into

their structure. First we consider a general one-sided, time-sequential

fire-support allocation problem, and then we consider various particulariza-

tions (in all, ten) of this general problem. These time-sequential fire-

support allocation problems are solved by applying the mathematical theory of

optimal control. In this work we emphasize developing "closed-form" solutions

in order to be able to conveniently see the structure of optimal fire-support

policies without spending the time and effort of extensive numerical deter-

minations. Moreover, part of our research has been to determine idealized

problems that are still militarily realistic but yet amenable to (at least

partially) "closed-form" solution. By contrasting the structures of the

optimal time-sequential fire- _:pport policies for these various problems we

study the dependence of these policies on the functional form of the model

of combat dynamics. Additionally, we consider the effect of suppression

(see, for example, [21]) on such optimal fire-support policies. We review

different ways in which to model suppressive effects within the context

of Lanchester-type formulations and briefly consider two fire-support allo-

cation problems with suppressive effects included in the model of combat

dynamics.

The research reported iii Appendix A was undertaken to develop an

understanding of the dependence of optimal fire-support allocation policies

on the nature of the combat model (i.e., the mathematical form of the model

for combat attrition). We were interested in trying to provide insights into

,'Only one of the two combatants is free to choose his time-sequential fire-

support policy.
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the answers to the following questions:

(1) How does the trend of battle affect optimal fire-support
allocation? How do target priorities for fire-support systems
change over the course of battle? Are they affected by the
nature of combat operations (i.e., whether defensive or offep-
sive, whether there are replacements or not, etc.)?

(2) Is optimal fire-support allocation sensitive to the nature of
the target acquisition process? Will changes in target acqui-
sition capability (in particular, new hardware developments
like a laser rangefinder) necessitate changes in fire-support
ellocation docr~ine?

(3) How should the allocation of our fire-support systems be

affected by the presence of enemy fire-support systems?

Previous research review by McNicholas and Crane [24] indicated that such allo-

cations have been largely judgmentally handled, and we wanted to establish a

quantitative basis for such decisions. In particular, we wanted to show that

the course of combat strongly influences the effectiveness of fire-support

allocations an. also that different situations require different allocation

rules for maximum effectiveness (i.e., there is no "universal" fire-support

allocation rule).

In Appendix B we examine the dependence of the structure of optimal

time-sequential fire-support allocation policies on the quantification of

military objectives by considering three specific problems, each corresponaing

to a different quantification of objectives (i.e., criterion functional). The

three criterion functionals that we consider are as follows: (I) a weighted

average of the force ratios of apposing numbers of infantry in the two infantry

combat zones, (II) the difference between the total military worths (computed

using linear utilities) of the surviving X and Y forces at the end of the

"approach to contact," and (III) the rnt1o of total military worths (again

computed using linear utilities) of the surviving X and Y forces. We determine

the optimal time-sequential allocation of supporting fires during the "approach

9



to contact" of friendly infantry against enemy defensive positions for each

one-sided combat optimization problem. The problems are all nonconvex, and

local optima are a particular difficulty in one of them. Each problem is

solved, and their solutions are contrasted in order to see how the optimal

fire-support allocation policy is influenced by the quantification of military

objectives. Additionally, we discuss possible future research suggested by the

work reported in this appendix.

The research reported in Appendix B was undertaken to determine the

sensitivity of the optimal time-sequential fire-support allocation policy

to the quantification of military objectives. This aspect of fte-support

allocation had apparently never been quantitatively examined. The only other

systematic examinations of the influences of the criterion function on the

structure of optimal time-sequential fire-distribution policies known to the

author are his own [34]-[43]. Furthermore, Pugh and Mayberry (31] have

suggested that an appropriate payoff, or objective function (in our terminology,

criterion functional), for the quantitative evaluation of combat strategies is

the loss ratio (calculated possibly using weighting factors for heterogenous

forces). In Appendix B we examine to what extent these criteria are in fact

equivalent.

In Appendix C we briefly consider optimal time-sequential fire-support

allocatio, policies when there are different combat dynamics (i.e., Lanchester-

type equations) in different "phases" of a battle. Such a situation occurs

when a combat unit becomes "ineffective" through reduction in strength, i.e.,

the unit reaches its so-called "breakpoint" (see [15] and [33]). We investigate

how optimal time-sequential fire-support allocation policies are modified by

tHowever, Pugh and Mayberry [31] do not explore the consequences of various
functional forms for the criterion functional.
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unit "breakpoints" being considered. The work reported in Appendix C is mote

exploratory than that reported in the other two appendices.

The research reported in Appendix C was undertaken to see how optimal

fire-support allocation policies are affected by such models of combat unit

degradation. In all the author'3 previous time-sequential allocation research,

unit breakpoints were not considered. Pitrthermore, the author is not aware

of any contemporary research that considers this factor. Our purpose was to

see if the nature of an optimal policy is modified by such an enrichment in

military detail.

6. Summary of Researvh Findings

Here we summarize our research results. We have (at least partially)

accomplished the tasks (a) and (b) that were suggested 'for future research

on p. 6 of our previous report [37]. Results are organized under the following

headings:

(1) solution methodology for time-sequential combat problems,

(2) insights gained into optimal time-sequential fire-support
allocation policies,

(3) implications for defense planning.

Items (2) and (3) differ in that the latter is a management-oriented digest of

practical implications of our research, while the former is oriented towards

a technical audience. Further amplification of results anC conclusions is

to be found in the appendices.

a. Solution Methodology for Time-Sequential Combat Problems

Our research has produced the following results on solution methodology for

time-sequential combat allocation problems. Specifically, we have accomplished

the following:

'C i
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(1) demonstrated that judicious choice of an approximation to the
combat dynamics leads to appreciable simplification in the
optimal fire-support allocation policy,

(2) concluded that simplified versions of a complex problem should
be initially considered in order to develop insight into the
structure of the optimal policy [such simplified problems
provide a point of departure for understanding mzce complex
problems (enriched in military details)],

(3) showed that global coniderations (Ie., value of criterion
functional) must be u-led ia such vonconve" optimal control
problems in order to determine the optimal policy [local
necessary conditions of optimality, in themselves, were
inadequate to determine optimal policyi,

(4) concluded that computational .ethods for conplex problems
must give consideration to structural properties of optmal
policies in idealized versions like those considered in this

report,

(5) illustrated how optimal control theory is applied to one-sided
combat optimization problems with different combat dynamics
in different "phases" of combat, denoted as "time-phased"
combat [this is the first time such a model has been considered
in military operations research].

b. Insights Gained Into Optimal Time-Sequential Fire-Support Allocation
Policies

Based on our study of the optimization of time-sequential fire-support

allocations using modern optimal control theory, we have reached the following

conclusions:

(1) the structure of optimal time-sequential fire-support allocation
policies depends on the following factors:

(a) decision criterion,
(b) combat operationg model,
(c) battle termination/unit breakpoint model;

the dependence is complex; future research should concentrate
on simplified models of tactical interest to explore how the
optimal policy depends on these factors; research is also
needed on methodology for integrating such theoretical results
into practical Navy and DOD planning studies,

12



(2) optimal time sequential fire-support allocation policies
are quite sensitive to the nature of the model of combat
dynamics; based on our study of a sequence of simplified
time-sequential fire-support allocation problems, we conclude
that:

(a) an optimal time-sequential fire-support allocation
policy depends on the dynamics of combat and target
priorities evolve dynamically over the course of
battle,

() the nature of the (Lanchester-type) target attrition
process for a supporting weapon system has a major
influence on the structure of the optimal fire-
support policy as do those for other force inter-
actions,

(c) the optimal time-sequential fire-support allocation
policy for an attack (approach to contact) is different
in structure from that for the defense of such an
attack,

(d) a "linear-law" attrition process from a supporting
weapon system against enemy target types may lead to
supporting fires being divided between enemy targets
in an optimal policy,

(e) a "square-law" attrition process always leads to
concentration of fire on a single target type as the
optimal policy,

(f) judicious choice (I.e., valuation in direct propurtion
to their rate of 4estroying friendly value) of the value
assigned to enemy survivors (computed according to linear
utilities) leads to a simple fire-support allocation
policy that is also intuitively appealing; this policy
remains optimal even when there are temporal variations
in the effectiveness of enemy fire,

(g) simple "nearly optimal" fire-support policies may be
developed through judicious approximations to the combat
attrition process,

(h) if suppression is a linear function of the kill rate of
the supporting weapon system, it has no effect on the
optimal fire-support policy when enemy survivors are
valued in direct proportion to their rate of destroying
friendly value (i.e., the optimal policy is not changed
if the suppressive effects are excluded from the model).

13



(3) optimal time-sequential fire-support policies are also quite
sensitive to the criterion functional (i.e., decision criterion)
chosen; b3sed on our study of several time-sequential fire-
support allocation problems (all with the same combat dynamics
but different criterion functionals), we conclude that the
optimal fire-support policy for a particular attack scenario
is significantly influenced by the quantification of military
objectivts and that the most important planning decision for
a side is whether it will seek to attain an "overall" or a
"local" advantage from its combat operations; we found that:

(a) the splitting of supporting fires between two enemy
forces in an optimal policy (i.e., the optimality of
singular subarcs) depends on whether the terminal
payoff reflects the objective of attaining an "overall"
military advantage or a "local" one,

(b) switching times for changes in the ranking of target
priorities are different (sometimes significantly)
when the decision criterion is the difference and the
ratio of the military worths (computed according to
linear uilities) of total infantry survivors.

(4) optimal time-sequential fire-support allocation policies are
sensitive to the modelling of unit breakpoints; the optimal
policy may be significantly changed in structure by adding a
nonzero force-level breakpoive into the combat model; such
optimal control problems are much more difficult to solve
than problems without unit breakpoints (i.e., only force-
level constraints).

c. Implications for Defense Planning

In our research reported here we have studied idealizations of allocation

structures chat commonly occur in defense planning studies. After studying

these idealizations in order to gain insight into the structure of optimal

fire-support allocation strategies in the complex real-world problem, we have

reached the following conclusions concerning considerations that should be

brought to the attention of defense planners. These results should be kept

in mind by practitioners who perform more detailed computer similation studies.

(1) The combat optimization problem should be thought of as
consisting of three parts:

(i) combatant objectives,
(ii) conflict termination conditions,

(iii) combat dynamics.

14



Optiul fire-support allocation strategies depend on all
three of the above. More basic scientific research should
be done on all three, particularly the first two.

(2) The time-sequential nature of target effects from fire support
have a s-:gnificant effect upon the optimal fire-support allo-
cation etrategies. Moreover, other combat interactions (e.g.,
friendlir ground forces with enemy ground forces) also influence
the opl mal policy.

(3) It may be quite dangerous to generalize optimal fire-support
strategies developed for specific problems. At present, more
research is needed on specific problems in order to develop
an understanding of the qualifications that may be necessary
to make about specific study results.

(4) The quantification of combatant objectives does affect optimal
fire-support strategies. The most important planning decision
is whether to seek a "local" military advantage or an "overall"
one.

(5) Unit breakpoints do affect (both directly and also indirectly)

optimal fire-support strategies. More scientific work is
needed on determining the relationship between unit effective-
ness and unit strength.

(6) Optimal fire-support strategies must be based on ground-
operations objectives. Suboptimization results when this is
not done. This suboptimization may be a serious problem,
since it could lead to, for example, destroying all the enemy
fire-support units but losing the overall ground campaign.

7. Suggested Future Research Tasks

After performing the research documented in this report, we feel that

the current state-of-the-art for applying differential-game/optimal-control

theory to time-sequential combat allocation problems is such that much more

significant results may be readily obtained in the future. Moreover, our

previous research provides valuable perspective for identifying what appears

to be the most important research tasks to be considered next. In our opinion

the most important task is to continue to examine the influence of objectives

on optimal fire-support strategies. Another important task is to study the

structure of optimal air-war strategies.
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Based on our past research experienne we feel that there is much to

be accomplished in the future. Specifically, we suggest the following as

future research tasks:

(1) Further study of how optimal time-sequential fire-support
allocation strategies depend on the nature of dynamic combat

interactions. Preliminary results for a sequence of one-
sidedt allocation problems were given in this report (see
Appendix A). We would extend these results that have already
yielded important insights Into optimal fire-support allocation
polici-s. Details remain to be worked out for a number of
allocat~on problems (see Appendix A). In particular, we would
further consider the modelling of suppressive effects of
supporting weapons in such work, with particular emphasis on
determining how such effects influence the opcimal time-

sequential allocation of supporting weapons.

(2) Further study of the dependence of the structure of optimal
tfte-sequential fire-support allocation policies on the quan-
tification of military objectives. Based on our work documented
in this report we conclude that more work needs to be done on
the identification of criteria for making tactical decisions
and on the quantification of such criteria. Our work indicates
that the structure of optimal policies may be significantly
affected by the quantification of military objectives. We
would consider additional criterion functionals and would
determine the corresponding optimal policy for each of these,
as we have done in Appendi: B (see discussion of proposed
future research in Appendix B). Also, some further computational
work remains to be done on the problems reported in Appendix B.
In particular, we would further explore whether the loss ratio
and the loss difference, i.e., the two decision criteria (see
[311), always lead to the same optimal fire-support policy.

(3) Further study of the effects on optimal time-sequential fire-
support policies of a campaign composed of different "phases"
(i.e., different combat dynamics in different pha..s of the
campaign). In Appendix C we presented some preliminary results
that investigate how considerations of unit "breakpoints" in
the combat model affect the optimal fire-support allocation
policy. We would extend these preliminary results that show
that such an optimal policy is "modified near a breakpoint." Our
results indicate that the nature of the planning horizon (as
determined by the modelling of unit breakpoints) is a signifi-
cant factor in the determination cf optimal fire-support alloca-

tion stra.egies. In other words, otherwise appropriate results

tOnly one of the combatants is free to choose his time-sequential fire-support

policy.
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can be entirely misleading if unit breakpoints are incorrectly
modelled (see Appendix C for further details).

(4) Study of methodology for the determination of optimal air-var
strategies. This study would include the quantitative deter-
mination of optimal time-sequential allocation of aircraft
to missions by application of game theory. A general framework
for interfacing a simplified model with a detailed simulation
(see [25]) would be developed. We would then focus on the
analytic determination of optimal aircraft mission-allocation
strategies by application of time-sequential game theory. A
general model of combat operations would be developed (to
include logistics, air and ground operations, FEBA movement,
logistics, logistics interdiction, etc.), but simplified models
would be studied in order to develop insights into the structure
of optimal air-war strategies. A special emphasis would be
placed on determining what structures for the combat dynamics
lead to a saddle point in pure strategies so that the computational
advantages of differential games may be exploited. We would em-
phasize determining how the model of combat operations influences

optimal air-war strategies. This work would be based on previous
studies by the author [34], [36], [37] and aided by his theoret-
ical developments on necessary conditions of optimali,y for
differential games (see [36], [46]). Our previous research [37]
has indicated that the outcome of the ground war is a significant
factort in the determination of optimal air-war strategies and
that optimal strategies developed for a model not considering
the attainment of land-war objectives need not be optimal when
evaluated in a model which does consider land-war objectives.
Our goal would be to extend the state-of-the-art [11], [13]
for such determinations.

(5) Examination of the effects of logistics constraints on optimal
campaign strategies. Models would be developed to relate
logistics capability to combat-effectiveness capability and then
appropriate combat optimization problems formulated. Such
research would provide insight into the worth of the Navy logistics
(pipeline) role in combat service support missions (see A--endix
E of [36]).

(6) Development of methodology for determining "good" allocation

strategies (e.g., fire-distribution strategies, air-war
allocation-of-aircraft strategies, etc.) in time-sequential
combat games. Based on our past research we feel that it is
essentially impossible to rigorously apply optimization theory
to determine optimal combat strategies for realistic combat models
of any appreciable complexity. However, many valuable insights
into optimal combat strategies may be gained by considering
simplified combat models. It would seem that "optimal" combat
strategies developed for such simplified models could be used

t This is not considered, for example, in either TAC CONTENDER [47] or OPTSA I
and 11 [7].
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as a point of departure for developing "good" combat strategies
for a complex combat model enriched in military detail. We

would work on the development of methodology to determine "good"
combat strategies (e.g., air-war strategies) by interfacing
such simplified and complex models (see [25]).

18

4!

18



REFERENCES

[1] H. Antosiewicz, "Analytic Study of War Games," Naval Res. Log. Quart. 2,
181-208 (1955).

[2] R. Bellman and S. Dreyfus, "On a Tactical Air-Warfare Model of Mengel,"
Opns. Res. 6, 65-78 (1958).

[3] L. Berkovitz and . Dresher, "A Game Theory Analysis cf Tactical Air War,"
Opne. Res. 7, 599-620 (1959).

(4] L. Berkovitz and M. Dresher, "Allocation of Two Types of Aircraft in
Tactical Air War: A Game Theoretic Analysis," Opns. Res. 8, 694-706
(1960).

[5] L. Berkovitz and M. Dresher, "A Multimove Infinite G8M with Linear
Payoff," Pacific J. Math. 10, 743-765 (1960).

[6] S. Bonder and R. Farrell (Eds.), "Development of Models for Defense
Systems Plamaning," Report No. SRL 2147 TR 70-2 (U), Systems Research

Laboratory, The University of Michigan, Ann Arbor, Michigan, Sept. 1970.

[7] J. Bracken, J. Falk, and A. Karr, 'Two Models for Optimal Allocation of
Aircraft Sorties," Opns. Res. 13, 979-995 (1975).

[8] C. von Clausewitz, On War, edited with an introduction by A. Rapoport,
Penguin Books Ltd., Harmondsworth, Middlesex, England, 1968.

[9] M. Dresher, Games of Strategy: Theory and Applications, Prentice-Hall,
Englewood Cliffs, New Jersey, 1961.

[10] D. Fulkerson and S. Johnson, "A Tactical Air Game," Opns. Res. 5, 704-712
(1957).

[11] R. Galiano and F. Miercort, "Results of a Survey of Tactical Air Campaign
Models," Ketron, Inc., Arlington, Virginia, November 1974.

[12] L. Giamboni, A. Mengel, and R. Dishington, "Simplified Model of a Symmetric
Tactical Air War," The RAND Corporation, RM-711, August 1951.

[13] L. Goheen, "Selection of a Method to Solve the n-Stage Game in BALFRAM,"
Tech. Note NWRC-TN-59, Stanford Research Institute, Menlo Park, CA,
August 1975.

[14J K. Harris and L. Wegner, "Tactical Airpower in NATO Contingencies: A Joint
Air-Battle/Ground-Battle Model (TALLY/TOTEM)," R-1194-PR, The RAND
Corporation, Santa Monica, California, May 1974.

[15] R. Helmbold, "Decisicn in Battle: Breakpoint Hypotheses and Engagement
Termination Data," R-772-PR, The RAND Corporation, Santa Monica, California,

June 1971.

19



[16] Y. C. Ho, "Toward Generalized Control Theory," IEEE Trans. on Automatic

Control, Vol. AC-14, 753-754 (1969).

[171 Y. C. Ho, "Differential Games, Dynamic Optimization, and Generalized

Control Theory," J. Opt. Th. Appi. 6, 179-209 (1970).

[18] R. Isaacs, Differential Games, John Wiley, New York, 1965.

[19] R. Isaacs, "Differential Games: Their Scope, Nature, and Future," J. Opt. Th.
Ap.l._3, 283-295 (1969).

[20] Y. Kawara, "An Allocation Problem of Fire Support in Combat as a Differential
Game," Opns. Res. 21, 942-951 (1973).

[21] D. Kinney, "Modeling of Weapon Suppression Effects," NWC TP 5620, Naval
Weapons Center, China Lake, California, February 1974.

[22] Z. Lansdowne, G. Dantzig, R. Harvey and R. McKnight, "Development of an
Algorithm to Solve Multi-Stage Games," Control Analysis Corporation, Palo
Alto, California, May 1973.

[23] Lulejian & Associates, "Lulejian Artillery Model Study (DRAFT)," Lulejian
& Associates, Inc. Torrance, California, June 1974.

[24] R. McNicholas and F. Crane, "Guide to Fire Support Mix Evaluation Techniques,
Volume I: The Guide and Appendices A and B," Stanford Research Institute,
Menlo Park, California, March 1973.

[25] R. Nolan and M. Sovereign, "A Recursive Optimization and Simulation Approach
to Analysis with Application to Transportation Systems," Management Science 18,
B-676 - B-690 (1972).

[26] L. Ostermann and J. Boudreau, "An Iterative Technique for Solution of Certain
Multi-Move Games," Lulejian & Associates, Inc., Torrance, California,
February 1972.

[27] General G. I. Pokrovsky (U.S.S.R.), Science and Technology in Contemporary
War, Stevens & Sons Limited, London, 1959.

[281 Proceedings of the Conference on the State-of-the-Art of Mathematics in
Combat Models, to appear.

[29] G. Pugh, "Theory of Measures of Effectiveness for General-Purpose Military
Forces: Part II. Lagrange Dynamic Programming in Time-Sequential Combat
Games," Opns. Res. 21, 886-906 (1973).

[30] G. Pugh and J. Mayberry, "Analysis of General-Purpose Force Procurement,"
Lambda Corporation, Paper 59, August 1971.

[31] G. Pugh and J. Mayberry, "Theory of Measures of Effectiveness for General-

Purpose Military Forces: Part I. A Zero-Sum Payoff Appropriate for

Evaluating Combat Strategies," Opns. Res. 21, 867-885 (1973).

20



[32] M. Schaffer, "Lanchester Models of Guerrilla Engagements," Opns. Res. 16,
457-488 (1968).

[33] S. Spring and S. Miller, "FAST-VAL: Relationships Among Casualties,
Suppression, and the Performance of Company-Size Units," RM-6268-PR,
The RAND Corporation. Santa Monica, California, March 1970.

[34] J. Taylor, "Application of Differential Games to Problems of Military
Conflict: Tactical Allocation Problems - Part I," Tech. Report NPS55Tw7O062A,
Naval Postgraduate School, Monterey, California, June 1970.

[35] J. Taylor, "Application of Differential Games to Problems of Military
Conflict: Tactical Allocation Problems - Part II," Tech. Report NPS55Tw72111A,
Naval Postgraduate School, Monterey, California, November 1972.

[36] J. Taylor, "Application of Differential Games to Problems of Military
Conflict: Tactical Allocation Problems - Part III," Tech. Report NPS55Tw74051,
Naval Postgraduate School, Monterey, California, May 1974.

[37] J. Taylor, "Appendices C and D of 'Applications of Differential Games to
Problems of Military Conflict: Tactical Allocation Problems - Part III',"
Tech. Report NPS55Tw74112, Naval Postgraduate School, Monterey, California,
November 1974.

[38] J. Taylor, "Survey on the Optimal Control of Lanchester-Type Attrition
Processes," presented at the Symposium on the State-of-the-Art of Mathematics
in Combat Models, June 1973 (also Tech. Report NPS55Tw74031, Naval
Postgraduate School, Monterey, California, March 1974).

[39] J. Taylor, "On the Isbell and Marlow Fire Programming Problem," Naval Res.
Log. Quart. 19, 539-556 (1972).

[40] J. Taylor, "Lanchester-Type Models of Warfare and Optimal Control," Naval
Res. Log. Quart. 21, 79-106 (1974).

[41] J. Taylor, "Target Selection in Lanchester Combat: Linear-Law Attrition
Process," Naval Res. Log. Quart. 20, 673-697 (1973).

[42] J. Taylor, "Target Selection in Lanchester Combat: Heterogeneous Forces
and Time-Dependent Attrition-Rate Coefficien-s," Naval Res. Log. Quart. 21,
683-704 (1974).

[43] J. Taylor, "On the Treatment of Force-Level Constraints in Time-Sequential
Combat Problems," Naval Res. Log. Quart. 22, 617-650 (1975).

[44] J. Taylor, "Some Differential Games of Tactical Interest," Opns. Res. 22,
'1,14-317 (1974).

[451 J. Taylor and S. Parry, "Force-Ratio Considerations for Some Lanchester-
Type Models of Warfare," Opns. Res. 23, 522-533 (1975).

[46] J. Taylor, "Necessary Conditions of Optimality for a Differential Game
with Bounded State Variables," IEEE Trans. on Automatic Control, Vol. AC-20,
807-808 (1975).

21



[471 USAF Assistant Chief of Staff, Studies and Analysis, "Methodology for

Use in Measuring the Effectiveness of General Purpose Forces, SABER GRAND

(ALPHA)," March 1971.

[48] H. Weiss, "Some Differential Games of Tactical Interest and the Value of a
Supporting Weapon System," Opns, Res. 7, 180-196 (1959).

[49] H. Weiss, "Combat Models and Historical Data: The U.S. Civil War," Opns. Res.
14, 759-790 (1966).

22



APPENDIX A: Some Time-Sequential Fire-Support Allocation Problems

1. Introduction.

An important constituent part of fire support is the target allocation

function which matches the specific type weapon with an acquired target within

its environment.t In view of the obvious importance of fire mission alloca-

tion, it is indeed remarkable that no systematic study has apparently been

made of the sensitivity of (predicted) combat outcomes to the nature of fire

mission allocation techniques and/or of the quantitative justification of such

*1*1 ti-iallocation rules. Typically, these allocation rules are based on target

priority lists along with such factors as amount of remaining ammunition,

range to target, etc. Unfortunately, the target priorities appear to be

judgmentally determined (the unchallengeable mystique of "military judgment"

or the "quantified judgment of military experts") and not related to the dynamics

of the battlefield situation. In view of this and also proposed future auto-

mation of fire direction centers (which perform the fire mission allocation

function), it would appear worthwhile to develop a quantitative scientific

methodology (which gives consideration to the dynamics of the battlefield

situation) for tha determination of fire mission allocation. In the work

reported here we will develop some insights into time-sequential target priori-

ties in fire mission allocation by the combination of optimization theory (differ-

ential game/optimal control theory) with Lanchester-type models of warfare.

t See pp. 1-33 to 1-43 of [21] for a discussion of the key elements of the fire
support system for systems analysis.

't Here we mean whether the allocation rules are "good" rather than whether the

analyst sees the decision process in the real world this way.

tttSee Table 13 on p. 11-66 of [21].



Thus, the determination of optimal target allocation strategies for

supporting weapon systemst is a major problem of military operations research.

This problem is of particular relevance to the Navy mission of fire support

(both by ship gunfire and by carrier-based air). The objectives of this

research are to determine optimal fire-support strategies in a time-sequential

fashion during the course of combat in several situations of tactical interest

and to study the dependence of these strategies on the nature of the combat

model. In this work consideration is given to the dynamics of combat. t  We

emphasize the development of explicit expressions for the optimal fire-support

Ftt
policies here. Such results are important not only for their own sake but

also for testing the capabilities of proposed computational methods (for

example, Lagrange dyna.mic programming [25) for discrete-time versions of such

problems or the Lulejian successive-approximation methodology [19]).

There are many approaches to answering the question of what is the

"best" allocation (over time) of supporting weapon systems. These range from

operational gaming (see [23] or [39] for a discussion of terminology and back-

ground) to analytical solution of an idealized differential game. However,

Berkovitz and Dresher (see p. 612 of [3]) state that "operational gaming is

not a helpful device for solving a game or getting significant information

about the solution." Indeed, one must distingu '- between finding out how

people make decisions and how they should. Most analysts agree with Berkovitz

and Dresher that operational gaming is not a useful tool for answering the

tSee [42] for a brief discussion of the distinction between a "primary" weapon
system (or infantry) and a "supporting" weapon system.

tt This is marked contrast with essentially all the work reviewed in [21] in

which apparently no consideration is given to the evolution of the course of

battle.

tttOne can clearly see the dependence of I e structure of the optimal time-
sequential allocation policy on model form and model parameters.
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latter question. Weiss [42] has emphasized that a simplified model of a

combat situation is particularly valuable when it leads to a clearer under-

standing of significant relationships which would tend to be obscured in a

more complex (and "realistic") model. It is in this spirit that most of the

work reviewed below has been done and in which we consider several simplified

models for gaining insights into optimal fire-support strategies.

Our research approach is to combine Lanchester-type models of warfare

with generalized control theory (i.e. optimization theory for dynamic systems).

This research program is described in more detail elsewhere [341, [35]. In

the initial phase of research reported here we will examine a sequence of one-

sidedt time-sequential allocation problems in order to study the dependence of

the optimal fire-support policy on the nature of the combat attrition process.

These problems represent various versions of the same basic fire-support situa-

tion. Many of these optimal control problems are solved in detail, and such

results are useful for evaluating computational algorithms (see above). In

future work, we would extend these results to two-sided optimization problems

(i.e. time-sequential combat games).t

2. Research Objectives.

The general objective of this reseecch is to develop combat attrition

models and optimization techniques to extend the state-of-the-art for the

determination of optimal time-sequential fire-support strategies in various

tactical scenarios. The specific oLjectives of the initial phase of this

research are to determine optimal time-sequential fire-support policies in

tIn other words, only one of the combatants is free to choose his time-sequential

fire-support allocation policy.

tt R. Isaacs [12] has emphasized the difficulties attendant with the transition

from one-sided to two-sided dynamic optimization problems.



several situations of tactical interest and to study the dependence of these

policies on the functi.inal form of the model of combat dynamics.

3. Review of Previoas Work.

The determination of optimal target allocation strategies for support-

ing weapon system,; is in one form or another probably one of the most exten-

sively studied p:oblems in both the open literature and also classified

sources. During World War II the problem of the appropriate mixture of

tactical and strategic forces (another aspect of the optimal fire-support

strategy problem) was extensively debated by experts. Some analysis details

are to be found in the classic book by Morse and Kimball (see pp. 73-77 of

[22]). The problem was studied at RAND in the late 1940's and early 1950's

(see [101) and elsewhere (see [1]). It would probably not be too far-fecched

to say that this problem stimulated early research on both dynamic programming

(see [2]) and also differential games (see [101, [11]). Today the problem

of optimal air-war strategies is being extensively studied by a number of

organizations (see, for example, [26], [40]).

t
The most widely studied Lanchester-type differential game has been

A. Mengel's "War of Attrition and Attack" (see pp. 96-105 of Isaacs' book [11])

(also see [35], [36]). Optimal time-sequential "air-war" strategies for two

versions of this problem are developed in Isaacs' now classic book [11].

Discrete-time versions of this problem have been considered by Berkovitz and

Dresher [3], [4] (see Appendix D of [37] for further references to other related

work). Another related problem was considered by Weiss [42], who studied the

optimal selection of targets for engagement by a supporting weapon system.

tThis term was apparently first coined in [34] (see also [35]).

#±See [33], however, for a justification of the optimality of strategies deter-
mined by Weiss [42]. A general solution algorithm is also presented in this

paper [33].



Kawara [15] has stud-'.- optimal strategies for supporting weapon systems

ir. an attack scenario which is a variation of the model considered by Weiss

[42]. Kawara [15] concludes that each side's optimal strategy for the dis-

tribution of its supporting weapon system's fire is to always concentrate all

fire on the enemy's supporting weapon system (counter-battery fire) during

the early stages of battle (if the total prescribed length of battle is long

enough) and then later to switch to concentration of all fire on the enemy's

infantry. He states that this switching time "does not depend on the current

strength of either side but only on the effectivenesses of both sides' support-

ing units" (p. 951 of [15]). Moreover, an optimal time-sequential fire-support

strategy has the property of always requiring concentration of supporting fires

on enemy infantry during the final stages of battle.

It is shown in [37], however, that Kawara [15] considered essentially

the only type of objective function which yields the switching times (i.e.

times of change from counter-battery fire to counter-infantry fire) to be

independent of force levels in the optimal time-sequential strategies. Addi-

tionally, we showed that for other attrition structures the optimal fire-

distribution strategy could consist of splitting one's fire between enemy

infantry and artillery (counter-battery fire). Thus, Kawara's conclusions

about the nature of optimal time-sequential fire-support strategies are not of

general applicability, and one must determine optimal fire-support strategies

on a problem by problem basis. Other time sequential fire-support allocation

problems have been considered in our past work [35], [36], [37]. Other recent

work has considered various conceptual and computational aspects of time-

sequential combat games [25], [26], [27].
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On a much more applied level, McNicholas and Crane [21] report the

results of research to identify a comprehensive methodology for evaluating

fire-support mixes. This is apparently the most comprehensive piece of

applied work on fire-support evaluation methodology and contains analysis of

the fire-support function and process, including a summary of previous work

and procedures for fire mission allocation. This problem (i.e. fire mission

al'ocation) is treated mainly in a descriptive manner (i.e. how do fire control

officers actually select weapons rather than how should they) with apparently

no consideration given to time-sequential aspects.

Lulejian and Associates, Inc. [19] report methodology for the optimum

allocation of field artillery fires over time between counter-fire and other

forms of fire support to engaged troops. The dynamics of combat are modelled

by "interactive equations" with time treated discretely. A very credible

brigade-level model of conventional tactical combat is developed. The Lulejian

work is similar in concept to the work reported here, only it is much more

detailed and complex. However, the computational optimization algorithm

(referred to as an enforceable-bound technique which is basically a successive

approximation method) apparently has no mathematical justification and has

not been reported in the open literature.

4. A General (One-Sided) Time-.Sequential Fire-Support Problem.

In this section we consider a general one-sided time-sequential fire-

support allocation problem. Particularizations of this general problem will

be subsequently considered in sections below.

Let us consider heterogeneous X forces in combat against heterogeneous

Y forces along a "front." Each side is composed of primary units (or infantry)

tIn other words only one of the combatants is free to choose his time-sequential

fire-support policy.
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and fire-support units. The X infantry (denoted as X1 and X2) is in

direct combat against the Y infantry (denoted as Y1 and Y2). We may

consider X and X2  to be two different infantry units operating on spa-

tially separated pieces of terrain. We assume that the X1 infantry unit is

in combat against the Y1 infantry unit and similarly for X2 and Y2 with

no "crossfire" (i.e. the X1 infantry is not attrited by the Y2 infantry).

For the battle described above, we will consider only the "approach to

contact" phase of the battle. We assume that one force attacks the other

along the "front." In most of the particularizations considered below the

attacker will be the X force. In this case the ."approach to contact" phase

of battle is the time from the initiation of the advance of the X1 and X2

forces towards the Y and Y2 defensive positions until the X1 and X2

forces actually make contact (assumed to be simultaneous in the two combat

areas) with the enemy infantry in "hand-to-hand" combat. It is assumed that

this time is fixed and known to X.

The associated Lanchester attrition-rate coefficients for combat

between the Xi force and the Yi force are denoted as ai(txi) for the

effectiveness of Y i's fire and as bi(t,yi) for the effectiveness of Xi's

fire. Based upon different sets of assumptions as to the conditions under

which the combat attrition process takes place, these coefficients (e.g.

ai(t,xi)) take different functional forms. We will give such assumptions for

each of the yr -ems considered subsequently below. Additionally, both forces

Itt
may receive replacements continuously over time with the corresponding

t The most comprehensive compendium of sets of assumptions and corresponding

Lanchester-type attrition processes known to this author is the IDA report by
A. Karr [14] (see also [5], [41]).

*Alternatively, we may consider that additional forces are entering into the

enemy's "field of fire" at these rates.
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replacement rates being denoted as r.(t) for the X forces and as si(t)

for the Y forces.

The Y forces may be supported by fire-support units (denoted as Z

with force level denoted as z(t)) which are invulnerable to (i.e. out of

range of) the direct fires of the X forces. In general, these fire-support

units cause attrition to the Xi  forces at a rate Ai(t,x1 ). (It should be

noted that this coefficient includes an allocation factor for the distribution

of Z fire over the X forces.) Particularizations of these general loss

rates and the circumstances under which they are hypothesized to apply are

given in the specific problems consiuered below. For the investigation reported

here, we assume that these Z fire-support units do not engage the W fire-

support units.

During the "appr-ach to contact" the fire-support units of the X force

(denoted as W) distribute their fire over the Y forces and (if present)

their fire-support units (i.e. Z). Cae purpose of this investigation is to

dpLermine the best possible such time-sequential allocation according to a

given criterion (given below). Let 4i denote the fraction of W fire-support

units which fire at Yi and Bi(t,Yi) denote the Lanchester attrition-rate

coefficient corresponding to the effectiveness of this fire against the Yi

forces. Again, particularizations of these general loss rates are considered

in the specific problems below. Further, let 0 denote the fraction of the

W fire-support units which fire at the enemy Z fire-support units (if these

are present in the specific model under consideration) and B(t,z) denote the

corresponding general Lanchester attrition-rate coefficient. We then have that

At

TThus, the loss rate for the Y. forces as a result of these supporting fires
is the product of these two factors, i.e. (loss rate for Y from W fire

support) = Bi(t,Yi
) .
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2
+ # i = 1 (so that * may be eliminated for convenience). Since the

W fire-support units are not in the combat zone (and consequently do not

suffer attrition from the Y forces) and are not engaged by the enemy's Z

fire-support units,% for constant *i there is a constant number of fire-
support units firing at Yi" The combat situation described above is shown

diagrammatically in Figure 1.

It is the objective of the X force to utilize its fire-support units

over time in such a manner so as to achieve the "most favorable" situation

measured in terms of the net worth of survivors (computed according to linear

utilities) at the end of the "approach to contact" at which time the force

separation between opposing infantries is zero and supporting fires must be

lifted from the enemy's infantry positions in order not to also kill friendly

forces. Thus, we have the following optimal control problem for the determine-

tion of the optimal time-sequential fire-support allocation policy (denoted

as *(t) for 0 - t 9 T (with i = 1,2), where T denotes the time of the

end of the "approach to contact") for the W fire-support units.

2 2
maximize { v Vx(T) - I w Yk(T)I ,

*i(t) k=l kk k=1

with stopping rule: tf - T 0,

dxi

subject to: d = -ai(t,xi)Yi - Ai(t,xi)z + ri(t),
(battle dynamics)

dyid = -b (tyl)X - iBi(t,yi) 4 si(t) for i = 1,2,

dz 
2

d-t (I - i)B(t,z),(I
i=l

SThis is not an essential assumption. The analysis presented here is easily

extended to the case in which the Z fire-support units engage in counter-
battery fire.

%t Other criterion functionals are considered in Appendix B.
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Figure 1. Diagram of General (One-Sided) Time-Sequential

Fire-Support Problem Faced by W Fire-Support Units.
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with initial conditions

xi(t-0) 'x and yi(t-O) Y for i 1,2 and z(tuO) O'

and

xlX 2,YlY 2,Z 0 (State Variable Inequality Constraints)

1 1+ 2 1 I.d fi a 0 for i - 1,2 (Control Variable Inequality Constraints),

where

vi denotes the value (utility) per unit of surviving X. force,
similarly for wi (which corresponds to the Yi force),

xi(t) denotes the number of Xt infantry at time t,
similarly for yi(t),

z(t) denotes the number of Z fire-support units at time t,

a,(txi) is a (Lanchester) attrition-rate coefficient (reflecting the
effectiveness of Yi fire against Xi),

similarly for b (t,yi),

Ai(t,xi) is a (Lanchester) attrition-rate coefficient (reflecting the
effectiveness of Z supporting fires against X i),

similarly for Bi(t,y i) and B(t,z),

tf (with numerical value T) denotes the end of the optimal control
problem,

and fi denotes the fraction of W fire support directed at Yi"

In the ensuing analysis of specific problems we will only consider

cases in which no force level is driven to zero (i.e. xi,yiz > 0). In Appendix

C we consider some models in which this assumption is relaxed and breakpoints

are considered for the various forces. Unfortunately, this leads to quite

complex mathematical details.
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5. A Sequetice of Problems to Study the Effects of Nature of Attrition Structure

on the Optimal Fire-Support Policy.

The effects of the nature of the attrition structure on the optimal fire-

support policy are studied by examining a sequence of specific problems and

then contrasting the structures of the optimal time-sequential fire-support

policies for these problems. In this manner we will study the dependence of

these jolicies on tile functional form of the model of combat dynamics. The

problems that have been considered are summarized in Table I. In most cases

the optimal time-sequential fire-support policy will be determined by the

mathematical theory of optimal control (see [6], [24]).

6.1. Problem 1.

In this sectiGn we will consider the special case of the general problem

(1) graphically depicted in Figure 1 in which both infantries in each of the

two combat zones cause attrition to the enemy forces at rates proportional to

only the numbers of firers. The corresponding Lanchester attrition-rate

coefficients are for mathematical convenience assumed to be constant over the

course of battle. It is convenient to refer to the attrition of a target type

as being a "square-law" process when the casualty rate is proportional to only

the number of enemy firers and as being a "linear-law" process when it is

proportional to the product of the numbers of enemy firers and remaining

targets. Considering both the work of Brackney [5] and alsc that of Karr :141,

we see that one set of conditions under which a "square-law" attrition process

occurs is when "aimed" fire is used and a constant time (indpendent of the

target type force level) is required to acquire targets (see [5], [14], and

[41] for a further discussion of such assumptions and alternative seto of

+
"To be pre, ise, one can only uonjecture that such an attrition process probably
occurs under the stated conditions.
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conditions which lead to such an attrition process). The X fire-support

units (denoted as W ) deliver "area fire" against the Y. forces.t In this1

case, the Y. attrition rate is proportional to the Y. force level (see [41];
1 1

also [14]). Other porticns of the general model (1) depicted in Figure 1 are

assumed to be absent.

In other words, we will consider the case in which the following hold:

ai(t,x i) = a. = constant,

bi(t,y.) = bi = constant,

Bi(tyi) = ciY i where ci is constant,

and Ai(t,xi) = B(t,z) = ri(t) = si(t) = 0.

For notational convenience we will again denote a. as a., etc. The parti-
1 1

cular combat situation is shown diagrammatically in Figure 2. It is then -on-

venient to re-state the problem as follows:

2 2
maximize { Z vkXk(T) - Z w kYk(T)},

Ylt) k=1 k=l

with stopping rule: tf - T= 0,

dx.
subject to: - = -aiYi ,  (2)

dt i
dyt -b.x. - Yc.Yi for i = 1,2,

dt 11 111

with initial conditions

xi(t=0) = x? and yi(t=0) = y? for i = 1,2,

In other words, we assume that X's fire support units fire (at a constant
rate) into the (constant) are contoining the enemy's infantry without feedback
as to the destructiveness of this fire.
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We will consider only the first of these here.

CASE I: w1/(a 1 v1 ) = w2 /(a 2 v2 ); i.e. wi = kaivi  for i = 1,2.

In this case enemy survivors are valued in direct proportion to the

rate in which they destroy value of the friendly forces. We then have

f f
S (T=O) = k(alClv y l -a2 c2 v2 y2) (24)

and

(=O) f abcvf f
1= alclVlY - a2c 2v 2y 2 + k( 1 1 1 1X1 - a2b2c2v2x2). (25)

There are now three further subcases: (A) aIb I = a2b2, (B) alb, > a2b2 and

(C) aIb I < a2b2. We will consider only the first of these here.

SUBCASE A: a1b = a2b2 (and wi = kaivi for i = 1,2).

We will focus on conditions which must necessarily hold on a singular

subarc. In this case the singular control (19) becomes

2 2 2
fS= (c2 R2 "2a1b1(c1Ql-c 2Q2))/(clR1 +c2R2). (26)

From (12) it follows that d-(clQl-c 2Q2 ) = -2(clSi-c 2 S2 ), whence by (18) on a

singular subarc

CQ1 = c2Q2 + constant. (27)

It is convenient to consider the force ratio r. = x i/Y and then by

(2) the force ratio statisfics the following Riccate equation

0 2ri a. - *iciri - bir.. (28)

We also compute 
that

d (rl\= a 1b 1l\ ~ , r
\jT j r ab 2 (El- - E-i- 7 - 1r-b2r2) - cl + ("-)c2}(-i.)

(29)
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and dx 2,X2,yly 2 > 0 (State Variable Inequality Constraints)

+ *2 = 1 and *i> 0 for i = 1,2

(Control Variable Inequality Constraints),

where all symbols are as defined above. It will be convenient to consider

the single control variable * defined by

so that 12 (1-t) and 0 < < 1. (3)

In the analysis presented here we assume that no force level ever becomes zero

(i.e. xiJ. y > 0 always). In Appendix C we consider some models in which

this assumption is relaxed and breakpoints are considered for the various

forces.

6.1.1 Necessary Conditions of Optimality.

We characterize an optimal fire-support policy by application of modern

optimal control theory. The Hamiltonian [6] is given by (using (3))

2
H E i= aY - ql(blxl+ Clyl) - q2 (b2x2+(l-O)c 2y2), (4)

so that the maximum principle yields the extreme control law

11 for S t) > 0,
*( = (5)

0 for S.(t) < 0,

"lhere S (t) denotes the 4-switching function defined by

S (t) = c1 (-q1 )y I - c2 (-q2)y 2. (6)

The adjoint system of equations for the dual variables (again using (3) for

convenience) is given by (assuming that xi(T), yi(T) > 0)

Pi = biqi with pi(T) = vi,
and .1(7)

qi= aipi + *)c.q. with q(T) = -w. for i =1,1.
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Computing the first two time derivatives of the switching function

St M C (b q x -a p y) - c(b q x -a~py) (8)

S (t) =2a b c1( x-q y)- 2a bc(px-qy)
1 2 ~iiII Ph (~ 222

+ fc 2(b q x +a p y1  -+-)c 2(b q +2 a~py (9)

we find that it is convenient for purposes of synthesizing extremals tto intro-

duce the variables Pis, Q., R., and S. for i =1,2 defined as follows:

P. =p.x. + qiy., Q. pix. - i ,

(10)
R. b bqx. + a piy., S. b~q~x. aipiy.,

and then (using (3)) we have for 1 1,2

f fPi(t) = v.X x w Y. constant, (11)

f f
Q = 2S. with Q.(T) = Vx + Wy(2

1 1 11 1 (12

f fR. i .CS.i with R.i(T) = -b iw ix . + a.iv iy., (13)

S.=2a b.Q. + .c.R. with S.(T) = -b w x. a av~y < 0, (14)

where x &,'notes x.(T) and similarly for y~' The first two time derivatives

of the switching function may then be written as

ct 1 cS 1 - c 2 S2'15

S (t) =2a 1b 1 c1A - 2a 2b 2 c2Q2

+ *c R1  (l cR2  (16)

Thus, we see that on a singular subarctt we have [6], [161

c 1 -qY, 2 (q 2y~p(17)

c 1S c 2S,2 (18)

t By an extremal we mean a trajectory on which the necessary conditions of
optimality are satisfied.

tt Se [31] for a further discussion.
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y;

with the singular control given by

(c 2 2 2 (19)S 2 c22(a1b1 1 1-2b2c2Q2) 1 )/ c ~ 2R 2 "

On such a singular subarc we require that

c2R + c2R2>0, (20)
1 1 22-

in order that the generalized Legendre-Clebsch condition be satisfied, since

aH) 2 2
=cR + CR 2dt2  Cl1 22

6.1.2 Synthesis of Extremals.

In this section we will partially synthesize the extremal fire-support

t
policy in one special case. In synthesizing extremals by the usual backwards

construction procedure (see, for example, [29] or [31])it is convenient to

introduce the "backwards" time T defined by T = T-t We then have

f
f aw 1 w\ vly

S (T=O) = a- cv2 1, (21)
1 a2c2v2 y \a 2V2  \av 1  (21

0

S (T) = -ClS 1 + C2S 2 ) (22)

and
00 2 2
: (T) = 2albl(ClQl) - 2a2b2 (c2Q2 ) + *ClR I - (I-€)c2R2, (23)

0 0

where S denotes the "backwards" time derivative S€ = dS/dT. Without loss

of generality we may assume that wl/(alVl) > w2/(a2 v2) and then ther are two

cases to be considered: -

U() wl/(a 1Vl) = w2/(a2v2),

(II) Wl/(a 1Vl) > w2/(a2v2).

.By an extremal policy we mean one for which the necessary conditions of opti-
mality are satisfied. It may, of course, not turn out to be an optimal policy.
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We will consider only the first of these here.

CASE I: w1/(alV1) = w2/(a2v2); i.e. wi = kaivi  for i = 1,2.

In this case enemy survivors are valued in direct proportion to the

rate in which they destroy value of the friendly forces. We then have

S (T=O) = k(alcvly-a 2 c2 v2 Y2 ) (24)

and f f f f
S€(T=O) = alClVlYl1 - a2c 2v 2Y2 * k(alblll 1 - a2b2c vx- (25)

There are now three further subcases: (A) aIb I = a262, (B) alb, > a2b2 and

(C) a1b1 < a2b2 . We will consider only the first of these here.

SUBCASE A: a 1b1 = a2b2 (and wi = kaivi for i = 1,2).

We will focus on conditions which must necessarily hold on a singular

subarc. In this case the singular control (19) becomes

2 2 2
fS = (c2R2-2albl(clQl-c 2Q2))/(cRl+c2R2). (26)

From (12) it follows that d-{c1Q1 c2Q2) -2(clSi-c 2S2), whence by (18) on a

singular subarc

CQ 1 = c2Q2 + constant. (27)

It is convenient to consider the force ratio ri = x i/y1  and then by

(2) the force ratio statisfics the following Riccate equation

• 2r. = a. - *icir. - bir i. (28)

We also compute that

d (r) (1 1 rlc(J)dT r jalb, --al -(blrl-h2r - cI + (I-O)c 2  ,

(29)
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since for ab = ab

1 1 2 2

rl/a r2/a2'--* blr1  b2 (30)

On a singular subarc where 0 < < 1 we have via (13) thatiS
dR1/dR2 = S31)

If we wind up on a singular subarc (for a finite interval of tim:) at the end

of the "approach to contact" then via (24) and (25) we have

f f f 
alll 1 =a 2c2v2y2  an acv 1  abcv

a 1 c1 v y1  Y n 1 b1 c1 vI1 a 2 b 2 c2'2x2 (32)

whence

b r = b r or, equivalently, rl/a I = r2/a (33)
1 1 2 2 1/a1  2 r 2

From (20) (using (13) and (32))we find that it is necessary that

f f
y > kb.x.. (34)

By (12) and (27), we have

CQ1 = c2Q2, (35)

whence by (26)

S cR 2 /(clRI+c 2R2) (36)

Considering (13), (31), and (37), we find that

cR1  = c2R2,  (37)

whence by (36)

2 = c2/(ci+c2) 
(38)

so that (29), (33), (38), and the uniqueness of solution to the Riccati

equation (28) yield

b = b2r 2  on a singular subarc. (39)
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Thus, we have shown that if we wind up on a singular subarc for a finite inter-

val of time ending at t = T, then on the singular subarc (39), holds. In this

case (29) superfluously yields d . /)= O.

6.1.3. A Consequence of Fire-Support.

In the work at hand we examine optimal fire-support policies under the

assumption that xi, yi > 0. Another aspect that we will briefly discuss here

(but not at this time pursue further) is the quantification of how che applica-

tion of fire support changes the course of combat. This may be quantitatively

seen by consideration of the force-ratio equation

dr /dt = b.r2 + *(t)cir. - ai,  (40)i 11 i 1

where ri = xi/y i . Let us consider a battle between the X. and Y. forces which

terminates at the first time that either of two given "breakpoint" force ratios

is reached. These "breakpoint" force ratios, denoted as rX when X. winsX. i

f f o f 1
and as r when Y. wins, satisfy 0 < r < r < 0+. Corresponding to

I 1 1
a fight until the annihilation of one side or the other is the case in which

f f
ry - 0 and = +w. For mathematical convenience we will consider this special

case, with results being readily extended to the general case. As noted in [34],

the entire topic of modelling battle termination is a problem area in contemporary

defense planning studies, and there is far from universal agreement on this topic.

Let us now see how the force-ratio equation (40) can help us to quantita-

tively evaluate the effect of fire support on battle outcome. We observe that

for a fight-to-the-finish that (a) Xi wins at t = T when ri (T) = +-, and

(b) Yi wins when ri(T) = 0. Thus, it seems appropriate to say that "the course

of battle is moving towards an X. victory" when dr./dt > 0 (or, simply, that

"Xi is winning"). Moreover, dri/dt > 0 if and only if
1
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bix(t) *M+ t)cx. (t)yiCt) > aiy.(t), (41)

which may be considered to be a "local" condition for X. to win. When *.(t)
1 1

is constant over the course of battle, then (41) holding at t = 0 is a nec-

essary and sufficient condition for X. to win. This may be pr'ven by. consid-

ering r(t) .{-i(t)ci +.i(t)c2+4aibi1/2bi and r:(t)- -{-#(t)c. -( L+ai } i  di/dt +I
/t2(t)c .+4a.b )/2b It follows that dr</dt < 0 for r: < r. < r+ and that

-++

ri < 0.< r. . Thus, ri(t) being nonincreasing and dri/dt(t=O) > 0 is a

sufficient condition for X. to win. We also observe that 3ri/3#i < 0 always

so that X can trade off initial infantry strength xi with fire support in

attempting to prevail in combat.

In other words, consideration of (41) shows us quantitatively how the

application of fire support may change the course of combat (in the sense of

determination of the victor). We will not pursue such matters further here,

however.

6.1.4. Need for Approximations.

We have not fully determined the optimal fire-jupport policy for

Problem 1. As seen in Sections 6.1.1 and 6.1.2 above the details are quite

complex. Moreover, the optimal policy (expressed as a closed-loop control

(see [34], [38])) depends on the five state variables t, x1, x2, yl and Y2

Thus, ** =*(t,x,y) . In the future we plan to determine the optimal policy

in some special cases (e.g. w. = ka iv.i and aIb 1  2 2b 2). Even so, it will be

quite complex to describe because of the dimensionality of the state space.

It is therefore of interest to use approximations to simplify solution

details. There are two limiting cases of the battle (2) that may be considered

in this respect, depending on whether X is the attacker or the defender. For

these limiting cases, the approximations are
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(1) X attacks: b. = 0,

(2) Y attacks: a. = 0.

We will see that such approximations (for example, that when X attacks, the

attrition caused by the attacking forces during the "approach to contact" is

negligible, i.e. bi = 0 (see [371)) lead to a considerable simplification of

[analytic solution details and then the optimal fire-support policy may be
readily determined. Without the use of approximations, it appears to be

impossible to develop insights into the optimal fire-support policy for (2)

without computational studies. Furthermore, the availability of complete

analytic solutions for simplified versions of (2) (i.e. when the above approxi-

mations are used) is useful for checking the adequacy of proposed computational

algorithms (see [6], [25], [26]).

6.2. Problem 2.

In this section we will consider a versiont (see Section 6.1.4) of

Problem 1 as given by (2) in which heterogeneous X forces attack the static

defense of heterogeneous Y forces along a "front." We assume that the Y.1
forces cause attrition to the Xi forces according to a "square-law" attrition

process. [As Brackney has pointed out [5], one would expect such a process to

occur when the time to acquire targets is negligible in comparison with the time

tThis is, of course, a special case of the general problem (1) (see Section 4)

graphically depicted in Figure 1 in which the following hold:

ai(txi) = ai = constant,

bi(tyi) = b. = constant,
Bi(t,yi) = ciY i where c. is constant,

ri (t) is a given piecewise continuous function

and Ai(t,xi) = B(t,z) = si(t) = 0.

For notational convenience we will again denote a. as a., etc.
1
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to destroy them. Such a situation is to be expected when one force assaults

another (see [51).] The attrition of the Yi force by the attacking Xi  is

assumed to be negligible. [We assume that the objective of the Xi forces

during the "approach to contact" is to close with the enemy position as rapidly

as possible so that small arms fire by Xi is held to a minimum or that firing

is done "on the move."] As before, the X fire-support units (denoted as W)

deliver "area fire" against the Y. forces (see [28] for a discussion of the1

determination of the Lanchester attrition-rate coefficient for the fire-support

units). All Lanchester attrition-rate coefficients are assumed to be constant

during the "approach to contact." Furthermore, we assume that additional X

forces enter the "fields of fire" of the Y. force at a rate denoted as r.(t).11

The above model might describe the combat attrition process for an amphibious

assault (see [7], [8], [13]) in which the attacking side employs fire-support

units.

The combat situation described above is diagrammatically shown in

Figure 3. It is convenient to restate the problem as follows:

maximize VkXk(T)- WY(T)i(t) k=l k=l

with stopping rule: tf - T = 0,

dx. (42)
subject to: -- = -a y. + ri(t)'

dt i1 1

dyidy = - iciYi for i = 1,2,

tAlternatively, if small groups of defenders are attacked by the W fire-

support units, then the same mathematical form of attrition occurs when the
time to acquire targets is the constraining factor in the attrition process
and this time is assumed to be inversely proportional to enemy troop density.
Brackney [5] postulates that this occurs for attacks upon enemy defensive
positions in which one must search (i.e. visually scan) for targets.
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Y1  Y2 Infantry

COMiBAT a 1 1  1 +2c2a2

ZONE

X X2 Infantry

r (t) r (t)

Figure 3. Diagram of Time-Sequential Fire-Support

Problem for an Amphibious Assault (Denoted as Problem 2).
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Xl' 2s ' 1 Y 2 
> 0 (State Variable Inequality Constraints)

€1 + *2 = 1 and *i > 0 for i = 1,2

(Control Variable Inequality Constraints),

where all symbols are as defined above. As shown in Table I, the above problem

(42) has been designated as Problem 2. It will be again convenient to consider

the single control variable 0 defined by (3). It should be noted that for

T < +- it follows that we will always have yi(t) > 0 for i = 1,2. Thus,

the only state variable inequality constraints (SVIC's) that must be considered

are x. > 0 . Howeve.', let us further assume that the attacker's infantry force

levels are never reduced to zero. This might be militarily justified on the

grounds that X would never attack the Y. position if his attacking X.1 1

forces could not survive the "approach to contact." As a possible future

research task we would recommend the determination of what relationship between

the Lanchester attrition-rate coefficients, initial force levels, length of

approach to contact, and the X fire-support policy is sufficient to guarantee

this (see Section 6.2.5). In Appendix C we consider some models in which break-

points are considered for the various forces.

6.2.1. Optimal Fire-Support Policy.

tt

The optimal time-sequential fire-support policy (expressed as a closect-

loop control ) for Problem 2 is shown in Table II with ancillary information on

switching times being given in Table III. It should be recalled that we have

assumed that neither of the attacking infantry forces can be reduced to a zero

force level durinig the approach to contact. The proofs of cortain statements

tFor a discussion of the distinction between an open-loop time-sequential policy

and a closed-loop one, see [341 or [38]. For deterministic models such as the
one under consideration, the two types of policies are well known to be equiva-
lent.
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Table II. Optimal Fire-Support Policy for 
Problem 2.+

Nonrestrictive Assumption: l/(a 1v1) > w2/(a2v2)

Optimal (closed-loop) time-sequential fire-support policy is
f f

PHASE I for 0 < t 1 = T - (Yl/Y2f

for y1/Y2 > a2c2v2/(a1c1v1),

*(t,x,z)= c2/(c1+c2) for yl/Y = a2c2v2/(alClvl),

0 for yl/Y2 < a2c2v2/(a clv1 ),

f f

PHASE II for T - Tl(Yl/y2) <t < T

1*Cy2)<= t,

where
f f

TS  for p > PS)

f f
T1 - for PL p  < PS'

f

0 for p f PLs

P >'l/Y2, and PL (allI  a)

NOTES 
t :

(1) T is the unique nonnegative root of F(T=TJ 0.
S f f

(2) For p < p  < PSf T is the smaller of the two positive roots of

G(T=T ;p) = 0.

%It is assumed that problem parameters and initial force levels are such that
xi (T) > 0 for i = 1,2.

ti See Table III for the definitions of F(T) and G(T;p f).
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Table III. Determination of the Switching Times
TS  and T for Problem 2.

Nonrestrictive Assumption: w1/(a1vl) > w2/(a2v2)

TS is the unique nonnegative root of F(T=TS) = 0.
f f

For p < 0 < PS T is the smaller of the two positive roots

of G(t=T ;P) = 0.

It has been shown that

(a) bounds on T are given by 0 < T < T,

(b) T.s a strictly increasing function of pf for p  < Pf

(c) there is no root to G(T=T ;p ) = 0 for p > PS.

For the above we have

1_w1 CI W
F(T) = T + e

SBounds on rS are given by:

(a) For W1/(alVl) < 1/c1,

1

w I w2 Wl

alv1  a2l2 - S -

(b) For 1/c 1  /(a1 v ), 1 <( )/ )
S w 1  _ w w2a I 1 - - al/ aiv2

2 A8 2
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regarding switching times are to he found in Section 2.3 of Appendix B.

As a closed-loop control, the optimal fire-support policy is most con-

veniently expressed in terms of yl/y2 - p (i.e., the ratio of the numerical

strengths of the two defending infantry forces) and T - T - t (i.e., the

"backwards" time or "time to go" in the approach to contact). When enemy

forces are valued in direct proportion to the rate at which they destroy

value of the friendly forces, i.e.

wi U kaivi for i - 1,2, (43)

the optimal fire-support policy takes a particulary simple form (denoted as

POLICY A):

POLICY A: For 0 < t < T

1 for yl/y2 > a2c2v2/(alclvl),

**(t,xy) = c2/(c1+c2) for yl/Y2 = a2c2v2/(alcvl
) , (44)

0 for yl/y2 < a2c2v2/(alcvl).

This is shown pictorially in Figure 4 in which optimal trajectories are

traced backwards in time. In this case, T 0 (see Table II), i.e. the

entire approach to contact is "PHASE I." It is convenient to note that,

for example, when O(t) = CONSTANT for 0 < T < 0 , we have

p() - pf exp {[c 1 - (1-)c 2 ] }

When enemy forces are not valued in direct proportion to the rate of

which they destroy value of the friendly forces (without loss of generality

we may assume that w1/(a"lv l w2/(a2v2)), the solution to Problem 2 is

considerably more complex as shown in Figure 5. As we see from Table II, the

planning horizon may be considered to consist of two phases (denoted as PHASE I

and as PHASE II) during each of which a different fire-support allocation rule is
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CASE for w /(a 1 v1  W w2/(a 2 v2)Y

SINGULAR S FACEF;+ / C 2 v 2

0

Backwards Time, T TinO

Figure 4. Diagram of Optimal (Closed-Loop) Fire-Support

Policy (POLICY A) for Problem 2

When w 1/ (aIv 1 )=TA2/(2 2
(not drawn to scale).
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CASE for v /(a v) > w /(a v2 )y

1~~~ 1 2Y

INGULAR SURFA

f

Policy (POIC B) f or /rblm

When wl/(a v ) >w 2 /(av)

(Rot drawn to scale).
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optimal. We denote this policy as POLICY B (see Table II). During PHASE I,

POLICY A is optimal; while during PHASE II, it is optimal to concentrate all

supporting fires on Y1  (which has been valued disproportionately high). The

absence or presence of PHASE II itself in the optimal time-sequential fire sup-

port policy depends on the ratio of enemy strengths p = y1/y2. The length of

PHASE II (i.e. TI) is independent of the final force levels of the attackingf f pf f

infantry units (i.e. xf and x2) but depends only on p -yf/y2 and the combat

effectiveness parameters (see equations (42)).

6.2.2. Necessary Conditions of Optimality.

The Hamiltonian [6] is given by (using (3))

2
H = ( p (aiYi+ri(t)) - qlclyl - q2(l-*)c2y2, (45)

i= 1

so that the maximum principle again yields the extremal control law (5). The

adjoint system of equations for the dual variable (again using (3) for conven-

ience) is given by (assuming that x. > 0)
1

pi(t) = vi  for 0 < t < T,

and (46)

= a.v. + iciq' with qi(T) = -w. for i = 1,2.

Computing the first two time derivatives of the switching function (6)

S¢(t) = -a1c1vl1y + a2c2v2Y2 ,(47)

S (t) = aclvlYl(cl) a2 c2v 2 y2(c 2 (l-4)), (48)

we see that on a singular subarc we have [61, [16]
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y1
1 Y2 = a2 c2v2 /(al'lV1 ), (49)

(-q1)/(alvl) - (-q2)/(a2v2), (50)

with the singular control given by

- c2/(c1+C2). (51)

On such a singular subarc the gernalized Legendre-Clebsch condition is satisfied,

since 0 d ")I alclvll
('7 dt (c1+c2) > 0.

The adjoint variables p(t) and q(t) are continuous at all points of

continuity of r T(t) = (r (t), r2 (t)). Let td be a point of discontinuity of

r(t). Then again p(t) and q(t) are continuous at td , although the

Hauiltonian satisfies H(td) = H(td) - v , where v is an unrestricted multi-unetrce dut

plier. Thus, changes (discontinuous) in r(t) have no direct effect on the

optimal fire-support policy.

6.2.3. Synthesis of Extremals.

In synthesizing extremals by the usual backwards construction procedure

it is convenient to consider (21) and

S (T) - a1clvly1 - a2c2v2y2. (52)

We will omit most of the tedious details of the synthesis of extremals because

they are very similar to those given in [31]. Without loss of generality we

may assume that w1/(a1v1) w2/(a2v2), and then there are two cases to be con-

sidered:

(I) w /(alvI) w2/(a2v2),

(II) wl/(a1v ) > w2/(a2v2).
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CASE I: wl/(a1v1) w2/(a2v2); i.e. wi = kaivi for 1 1,2.

In this case (21) becomes

S (T=0) = a2c2v2Y2(Wl/(avl)) {alclv 
f/(a 2 c2v2 ) -

whence follows (44) by the usual methods.

CASE II: w1/(alv I) > w2/(a2v2).

a In this case it follows from (5), (6), and (21) that for pf = /y2

a2c2v2/(a1c1v1 ) we have S (T) > 0 and 4*(T) = 1 for all T > 0 . Since

S (=0) < 0==S (=O) < 0 it follows that for p < a-

we have S (T) < 0 and *(T) = 0 for all T > 0 .

There may be a change in the sign of S (T) for c2w2/(clWl) < pf

a2C2V2 /(a1c1v1 ). In this case 0*(T) = 1 for 0 < T < T1 and then

f)2222I (eClT l)alv) +f +(:alcll)() f w

(T) = a 2 Y f- T ___v)

0 0

It is clear that we must have S (T=T) < 0 . If S (=T I ) < 0 , then we have

a transition surface with T1  (denoted as T4) given by the smaller of the two

f f
positive roots of G(T=T;pf ) = 0 , where G(T;P ) is given in Table III. If
04o

S (r=T = 0 , the singular subarc may be entered, and then T1  (denoted as T )

is given by the unique nonnegative root of F(r=TS) = ) , where F(T) is given
Sf 

f

in Table III. We denote the corresponding value of p as PS " Then there is

f f
no switch in 4)* for p > S (see Section 4.2 of Appendix B for a proof of

this statement; the development of bounds for TS is also given there).

F The above information immediately leads to the extremal field shown in

Figure 5 (see also Tables II and III).
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6.2.4. Determination of the Optimal Fire-Support Policy.

As we have discussed elsewhere [30]-[32], [341, [38], the optimality

of an extremal trajectory may be proven by citing the appropriate existence

theorem for an optimal control to the problr.m at hand; there are two further

subcases: (1) if the extremal is unique, then it is optimal or (2) if the

extremal is not unique and only a finite number exist, then the optimal trajec-

tory is determined by considering the finite number of corresponding values of

the criterion functional. The existence of a measurable optimal control fol-

lows by Corollary 2 on p. 262 of [18]. In Section 6.2.2 and 6.2.3 above, we

have considered necessary conditions of optimality for piecewise continuous

admissible controls (see p. 10 and pp. 20-21 of [24]). It remains to show that

one of the measurable optimal controls is piecewise continuous. This may be

done by observing that if we consider the maximum principle for meIsurable

controls (see p. 81 of [24]), then it follows from the backwards synthesis

of extremals that the optimal control is piecewise constant (and hence piece-

wise continuous)ttt. The optimality of the extremal fire-support policy devel-

oped above follows by the uniqueness of extremals (see [31]).

tIt has not been possible to determine the optimality of a policy by citing one

of the many known sets of sufficient conditions (see [6], [31], [38]). In par-
ticular, even though the planning horizon for the problem at hand is of fixed
length, one cannot invoke the sufficient conditions based on convexity of
Mangasarian [20] or Funk and Gilbert [9] because the right-hand sides of the
differential equations (42) are not concave functions of x, , y, . and 0"

ttWe have taken the liberty of changing the sign of the adJoint vector of

Pontryagin et al. [24] (see p. 108 of [6]). When the admissible controls are
measurable and bounded, the Hamiltonian (45) need only attain its maximum almost
everywhere in time.

ttThis follows from the control variable appearing linearly in the Hamiltonian
(45), the control variable space being compact, and the switching function being
continuous for 0 < t < T . The maximum principle (also singular control consid.-
erations) then yields that the optimal control must be piecewise constant and
uniquely determined almost everywhere, since S (t) can change sign at most once
(see p. 130 of [24]). [The author wishes to think J. Wingate for pointing out
this type of argument.]
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6.2.5. A Further Consequence of Fire Support.

In the work at hand we have examined optimal fire-support policies under

the assumption that xi > 0 . Another aspect that we will briefly discuss here

(but not at this time pursue further) is the quantification of how fire support

can guarantee that xi > 0 always. From the state equations (42) we have

t t Si

o + f r(s)ds -ayo f ds exp {-c f 4i(S2)ds
0 0

so that we see explicitly how xi(t) depends on the fire-support policy adopted

by X . For example, when i = 1 and ri(t) = ri , then

-c t
xi(t) = xi + rI t - (l-e )aiYi/c i .

For such an expression, it would be of interest to determine what conditions

guarantee that xi(t) > K > 0 . Moreover, time-sequential fire-support alloca-

tion in this model may determine whether enough Xi  survive the approach to

contact to effectively initiate close-assault tactics.

6.3. Problem 2a.

As seen in Table I, Problem 2a is the version of Problem 2 in which

rM(t) 0 . This problem is further considered in Appendix B within the con-

text of examining the influence of X's combat objectives on his time-sequen-

tial fire-support policy. The optimal fire-support policy for Problem 2a

(under the assumption that xi > 0) is exactly the same as that for Problem 2

(as given in Section 6.2.1 above).

6.4 Problem 2b.

It is of interest to consider a version of Problem 2a with temporal

variations in the effectiveness of Yi's fire. This might model, for example,

A-36

' ~ i~m 'w m n .. . . . . .. .. . . .. . . ...



the situation in which the Xi forces move as a fairly compact unit and the

effectiveness of Y1's fire is strongly dependent upon the force separation

between Xi and Y " [We recall that the Xi  forces are moving towards the

static position of Y (see Figure 3).] Let us briefly consider this case.

22
maximize E vk xk (T) - wk Yk (T),

*Pt)M k-i k-i

with stopping rule: tf - T = 0

dxi
subject to: - .ai(t)y i

(53)
dyi

-- -_ iclYi for I - 1,2,

Xis Yi > 0 , *l + $2 i1 , and 0i>0 for 1 1,2.

It will again sometimes be convenient to consider the single control variable

0 defined by (3). As usual, we consider only the case in which x (T) > 0

6.4.1. Optimal Fire-Support Policy in a Special Case.

When enemy survivors are valued in direct proportion to the rate at

which they destroy value of the friendly forces (i.e. (43) holds), the optimal

fire-support policy takes a particularly simple form: for 0 < t < T

1 for yl/y 2 > a2(t)c2v2/(a1(t)c1vl),

0*(t,x,y) - for yl/Y 2 - a2(t)c2v2/(aM(t)clvl), (54)

0 for y1 /Y2 < a2(t)c2v2/(a1(t)c1vl).
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where

S = c2 /(ci+c2 ) +  a It) da a2 (t) dt ci c2)a (55)

It should be noted that when a (t)/a 2 (t) = constant, then *S c2 /(c 1 4c2 ) so

that the solution is essentially the same as that for Problem 2 in this case.

6.4.2. Necessary Conditions of Optimality.

The necessary conditions of optimality for (53) are similar to those

for Problem 2 given in Section 6.2.2 above. The Hamiltonian is given by

2
H = - Pa (t)y - qIcylCl - q2(l-0)c2y2. (56)

i=l

The maximum principle again yields (5) as the extremal control law, and (46)

again holds (with ai replaced by ai(t)).

Computing the first two time derivatives of the switching function (6)

(t) = -a(t)cvy + a2 (t)cvY

1 1 111 2 222

S (t) = a(t)clv Yl(C1y ) - a2 (t)c2v2Y2 (c2 (l-0)) - alclv y1 + a2 c2 v2 Y2

we see that on a singular subarc [6], [16]

yl/Y2 = a2 (t)c2v2/(al(t)clVl),

(-ql)/(a1(t)v1) = (-q2)/(a2(t)v2),

with the singular control given by (55). The generalized Legendre-Clebsch

condition is easily shown to hold.

The results given in Section 6.4.1 follow from the usual backwards syn-

thesis procedure and the observation that (21) still holds.
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6.4.3. Suggested Future Work.

It would be of interest to examine the optimal time-sequential fire-
f f f

support policy when w1/(afvl) > w2/(a2v2 ) (where a1 (T) - af). We suggest

this as a possible future research task.

Let us consider some of the algebraic complexities of the above proposed

work. We will focus on the determination of the switching time T1 correspond-

ing to that given in Section 6.2.3 above. In this case **(T) - 1 for 0 < T

_T 1 , and then

a2 2v2Y 2 f - P f
S Cr) = a2c

T ~~~ acv al/ \av/
____- I,}°°.,,,,.[ _Io,,, ,fVo) 1}cl -0a0

f f f

where p = yf/Y2
O ma

One must make assumptions about the functional form of a (t) to carry
m i

the above work along further. If, for example, a1 (t) = ka t , where mi is
mi i

a positive integer, then ai(o) = k a(T-o) . We then have

T Cl 0

{al(o)/a }do
0

m1
1 ml m k c Tl k1  1 1 {(I-T/T)m1 e -1}c I  k (m1-I-) I (clT) k

It appears to be very messy to determine T1  such that S (r=rI) = 0 , but

numerical methods might prove useful here.
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6.5. Problem 3.

In this section we will consider a versiont (see Section 6.1.4) of

Problem I as given by (2) in which the Y forces attack the static defense of

the X forces along a "front." We assume that the Xi force causes attrition

to the Y force according to a "square-law" attrition process. t  The .ttrition

of the X force by the attacking Yi is assumed to be negligible. As before,

the X fire-support units (denoted as W) deliver "area fire" against the Yi

forces. All Lanchester attrition-rate coefficients are assumed to be constant

during the "approach to contact." Furthermore, we assume that additional Yi

forces enter the "fields of fire" of the Xi forces at a constant rate denoted

as si.

The combat situation described above is diagrammatically shown in Figure

6. It is convenient to restate the problem as follce-s:

2

minimize k wkYk(T),
+i(t) k

with stopping rule: tf - T = 0

dyi
subject to: -t-= Ki - iciYi (57)

Yi 0 , 'l + 2 = 1, and >0 for i = 1,2,

tThis is, of course, a special case of the general problem (1) (see Section 4)

graphically depicted in Figure 1 in which the following hold:

bi(tyi) = bi = constant,

Bi(t,y1 ) = c1yi where ci is constant,

si(t) = -9 = constant,

and ai (t,xt~xi) = B(t,z) = ri(t) - 0

For notational convenienc, we will again denote b as bi, etc.

ttSee Section 6.2 for a discussion of the rationale for this and subsequent

assumptions.
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Figure 6. Diagram of Time-Sequential Fire-Support
Problem For an Enemy Attack

(Denoted as Problem 3).
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where
0

Ki = -bixi + s . (58)

As above, it will sometimes be convenient to consider the single control varia-

ble 0 defined by (3). Again, we consider only the case in which yi > 0.

6.5.1. Necessary Conditions of Optimality.

The Hamiltonian is given by

H = ql(K-c yl) + q2(K2-(l-O)c2y2). (59)

The maximum principle again yields (5) as the extremal control law, and the

adjoint equations are (for yi > 0)

= q with qi(T) = w1  for i = 1,2. (60)

Computing the first two time derivatives of the switching function (6)

M(t) c KlqI - c2k2q2

S(t) = C1K1ql(C1 0) -c2K2q2(c2(1-0)),

we see that on a singular subarc

yl/Y= K/K 2 = (sl-b x0)/(s2-b2x2), (61)

clKlqI = c2K2q2, (62)

with the singular control again given by (51): 0S c2/(ci+c 2)" On such a
2 1

singular subarc we have - t -- = -clKlql
Do ~ 2  3 1K (cl+c2) so that the generalized

Legendre-Clebsch condition is satisfied only when K1, K2 > 0 , since q (t) > 0

Vt for i = 1,2.

A-42



In synthesizing extremals it is convenient to consider

ff

S o ( = c 2  K) C K K2 (63)

and

S (T) = -clq 1 + c 2 K2 q2 . (64)

From consideration of the generalized Legenidre-Clebsch condition we see that

three cases to be considered (othe:s are possible) are:

(A) K1 , K2 > 0

(B) K1 =K 2 =0,

(C) K, 2< 0.

Singular subarcs are not optimal for Case C.

0

6.5.2. Optimal Fire-Support Policy for bixi < si  for i , l2.

Without loss of generality we may assume that c1 KlW> c2 K 2w2 ,and

then there are two cases to be considered:

(I) c1K1w1 = c2K2

(II) ClKlwI > c2K2w2

CASE I: c 1Kwl m c2K2w2; i.e. W
f k/(ciKi) for i 1,2.

In this case enemy survivors are valued inversely proportional to the

produc" of their vulnerability to W's fire and net rate of change exclusive of

W fire support. Then (63) becomes S (T=O) c K w {Yf/K - yf/K Notingd(--I (2 l c2Y2Y/K -2K} Noting

that - = c - (i-)c2i) , the usual arguments yield that the

optimal time-sequential fire-support policy is given by: for 0 < t < T

, 1 for yl/Y2 > K1/K

0*(txy) = /(c +c ) for yl/Y = KI/K
c2  1 2 1 2 1 2

0 for y1/Y2 < K1/K2
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CASE II: clKlW >c 2K 2w2 .

In this case the solution has the same structure as that for Problem 2

as given in Tables II and III. The planning horizon may be considered to be

divided into two phases in a similar fashion. Details are to be worked out in

the future.

6.5.3. Optimal Fire-Support Policy for bixi = si for i = 1,2.

In this case K = K2 = 0 so that (6), (60) and (64) yield that

S = ClWY 1 - c2w2y2 ,

whence follows that the optimal fire-support policy is given by: for 0 < t < T

fc I (T-t0
for p -> pS e

f -c2 (T-t) f cl (T-t)
4 (t,x,y) any feasible value for pS e < P < PS e , (65)

f -c2 (T-t)
0 for p< p e

where p Yl/Y 2 , S =(alClv)u ( c2w2 /(cyw) , and -[-c +

(l-)c 2 }p . An understanding of this case is essential for developing the solu-

tion for the next case.

0
6.5.4. Optimal Fire-Support Policy for bixi > Si for i = 1,2.

In this case it is never optimal for the W fire-support units to split

their fire between Y and Y2 (for a finite interval of time). The develop-

ment of a solution is much more complex than that for the previous cases and

depends on an understanding of the results given in Section 6.5.3. Details have
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not been completely worked out at the time of the writing of this report, and

we would propose to ONR as possible future research the further study of this

important problem.

6.6. Problem 4.

As seen in Table I, Problem 4 is a version of Problem I (see Figure 2)

in which we may consider the X force to be the attacker and the Y force to

be the defender. Additionally, the attacking Xi force causes attrition to the

defending Y according to a "linear-law" process t, while the defending Yi

force causes attrition to the attacking Xi according to a "square-law" proc-
tt

ess. Other aspects are the same as those for Problem 1. Thus, we have

2 2
maximize k=l vkXk(T) -k; wkYk(T),

with stopping rule: tf - T =0,

dxi
subject to: -- = aiYi ,

dyi 
(66)

dt - *iciYi

xi Yi > 0 1 + I2 = 1, and > 0 for i = 1,2

As above, it will sometimes be convenient to consider the single control variable

defined by (3). For T < 4- , it follows that Yi(T) > 0 so that we need

tSee Section 6.1 for an explanation of terminology.

ttBrackney has hypothesized that such a situation occurs when both sides use
aimed fire, a defender's time to acquire an attacker is negligible in comparison
to the time to kill an acquired target, and the time for an attacker to acquire
a defender is relatively large by reason of his opponent's remaining under cover
in defensive positions (see pp. 32-33 of [5]).
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only be concerned with the SVIC's xi > 0 for i = 1,2. Again, we will consider
i-

only the case in which xi(T) > 0 .

6.6.1. Optimal Fire-Support Policy in a Special Case.

When enemy (i.e. Y) survivors are valued in direct proportion to the

rate at which they destroy value of the friendly forces (i.e. (43) holds) and

friendly survivors are valued in direct proportion to the ratio of their fire

effectiveness to that of their supporting weapons (i.e. we have that

v= K bi/c i  for i - 1,2), (67)vi

the optimal fire-support policy takes a particularly simple form (assuming that

< b1X1 - b2x2 < c2): for 0 < t < T

f
1 for PS'

* f
4)(t,x,y) ) for p = PS , (68)

S
f

0 for p < P S

where p = y1/Y2 , P a2c2v2/(a1cV1 I) , and p {-b1x1 + b2X2 - dc 1 +

(l-€)c 2 }P . When b 1  b2 
= 0 , we see that the solution reduces to that for

Problem 2a.

6.6.2. Necessary Conditions of Optimality.

The Hamiltonian is given by

2
H= - i PiaiYi - qlY 1 (b1 X1 + cl) - q2Y2(C2x2 + (1-)c 2)" (69)

'This condition is satisfied if, for example, IblX - b2x21 < minimum (cl,c2).
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The maximum principle again yields (5) as the extremal control law, and the

adjoint equations are (for xi(T) > 0 )

P i = biiqi with pi(T) = v

Sy ii

and (70)

= aiPi + (bixi + *ci)qi with qi(T) = -wi for i = 1,2.

Computing the first two time derivatives of the switching function (6)

S (t) = -a1clP1Y1 + a2c2p2y2

SM(t) = cl(-ql)Y (a b Y + a clPlYl(b X + C

-c2(-q2)Y2 (a2b2Y2) - a 2 c 2 p2 y 2 (b 2 x 2 + (1-O)c 2)

we see that on a singular subarc

yl/Y2 = a2c2P2/(a1cpll) , (71)

(-q1)/(a1PI) = (-q2)/(a2p2) , (72)

with the singular control given by

S = c2/(ci+c2 ) + {b x - blX + (a2b2Y2-alblyl)(-ql)/(alpl)}/(cl+c2) " (73)

2~~~~_ d1 2H 2=

The generalized Legendre-Clebsch condition is satisfied, since d )2 DH

alcl~ (lC ) > 0.•
a1 c1 p1 y1 (c 1+c 2)>

In synthesizing extremals it is convenient to consider (21),

@

S@(T) = a1c1P1y1 - a 2 c 2 P2y2
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and

S.(-t0) alclv Y1 alcvYl ) + bl1x + c

2 22Y 2  (2c2v2y2 )+b 2 X2 + (l-)c 2 },

whence follows the results given in Section 6.6.1 by the usual arguments using

(43) and (67).

6.7. Problem 5.

As seen from Table I and Figure 1, Problem 5 is a version of the general

fire-support problem (1) which corresponds to the addition of fire-support units

(denoted as Z) to the enemy Y forces in the basic scenario of Problem 1 (see

(2) and Figure 2). These Z fire-support units engage the X forces and cause

attrition to Xi according to a "square-law" attrition processt with the cor-

responding Lanchester attrition-rate coefficient being denoted as a, . Addi-

tionally, when the W fire-support units engage the enemy Z units in counter-

battery fire, we assume that an enemy fire-support unit is engaged as a point

target and that the W units have the capability to sense when an enemy support-

ing unit has been destroyed so that fire may be immediately shifted to a new

target (with the W fire uniformly distributed over the Z survivors). Thus, we

have the following fire-support problem

TThis corresponds to assuming that "small groups" of the Xi  force are attacked

as point targets by the Z tire-support units and that the time to acquire such

targets is negligible compared with the time to destroy them. Brackney [5]

postulates that such is the case when the Xi  forces essult the Yi positions.
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{~ 2 2
maximize X vkxk(T ) k- Yk(TJ ,
ep.t) .1. k~

with stopping rule: tf - T = 0 ,

subject to: d ai ai

dyi
d-= -bixi - icgiy , (74)

dz

xiyi,Z O, 03+€2 < 1, and 0> 0 for i 1,2

For the analysis presented here, we assume that xi(T), yi(T), and z(T) > 0

As was the case for Problem 1 (see Sectiors6.1.1 and 6.1.2 above), with-

out the use of simplifying approximations (see Section 6.1.4) the determination

of the optimal fire-support policy is (hopelessly) complex. Let us note here,

however, that the Hamiltonian is given by (for xiy 1 ,z > 0)

2 2

H - Pi(aiYi + a iz) - qi(bixi + *iciy) - p(i-€i€2s

The maximum principle yields that

1 for KI > max(0,K 2) ,
¢l*(t) = (75)

0 for K1 < max(0,K 2 )

and

1 for K2 > max(0,K l) ,

2(t) 
(76)

0 for K2 < max(o,) ,

where

Ki  ci(-qi)y, - 0(-p). (77)
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The adjoint equation are given by (7) and (assuming that z(T) > 0)

2
p= I kpk  with p(T) = 0. (78)

kal

In the next section we consider the simpler case of the above problem

(74) in which bi -0.

6.8. Problem 6.

As seen from Table I, Problem 6 is a simplified version of Problem 5

(setting bi = 0 and adding friendly replacements at a rate denoted as ri(t)).

Problem 6 is analogous to Problem 2 with the addition of enemy fire support

units (denoted as Z)(see Section 6.7 above). Thus, we have

{2 2maximize V kxk(T) - Z WkYk (T),
Wx =l k=l

with stopping rule: tf - T 0 ,

dxi

subject to: -aiYi iz + ri(t)

dy i
d - = -+ c i Y i ,( 7 9 )

dz

xiYiz > 0, i + _2 
< 1 , and 0 for i 1,2

For T < + , we have yi(t) > 0 always so that the only SVIC's that must

be considered are xi, z > 0 for i = 1,2 . In the analysis presented here,

however, we will assume that xi , z > 0
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The optimal time-sequential fire-support policyf in the special case in

f
which z . z(T) > 0 and enemy survivors are valued in direct proportion to

the rate at which they destroy value of the friendly forces (i.e. (43) holds)

is shown in Figure 7. It is impossible for it to be optimal for W to divide

his fire between Xi  and Z for a finite interval of time, since

Ki(t) = alciv iYi(cp) # 0. However, it is possible to have an X - X2  split.

Considering D(t) = Kl(t) - K2(t) , we find that (49) and (50) again hold on

such a singular subarc with the singular control given by (from D(t) - 0 when

L(t) = 0) 0i = c2 /(c1 + c2) and *2 = c1/(c1 + c2).

In the future, we will give information for the various extremals shown in

Figure 7 (see Figure 4 and Table I on pp. D-43 through D-55 of [371). For ex-

CI y f
ample, for path P Al we have yl/Y2 > a2c2v2/(a ll ) andtt

W* I
1 Al

for 0 < T < T

-2 2( T ) = 0 .

* Al Al k)Th wicin im 1 isgvnb 1(= r1 ) 0whr

Al
It vay be shown that K(T) > K2 (T) for 0 < T < T •

1_ 2 1

t The details of the development of the optimal time-sequential fire-support

policies for Problems 6 through 10 are omitted. These will be given in the

future.

tthe maximum principle again yields (75) and (76).
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6.9. Problem 7.

If we let the attrition by the enemy Z fire-support units in Problem 6 be

a "linear-law" attrition process (see Sections 6.1 and 6.2 for a discussion of

this assumption), then the resulting problem we denote as Problems 7 (see Table

I). We have then

(2 2
maximize I vkxk(T) - I WkYk(T)
*i(t) Ik-l k-l

with stopping rule: tf - T = 0 ,
dxi

subject to: d -aiYi - aixz,

dyi

= -OiciYi (80)

dZ-

XiyiZ > 0 , I 2 - 1 , and qi > 0 for i = 1,2

For T < , we have yi(T) > 0 so that toe only SVIC's that must be con-

sidered are xi,z > 0 for i = 1,2. In the analysis presented here, however,

we will assume that x i z > 0.

The optimal fire-support policy is snown in Figure 8 for the special case

in which zf > 0 and enemy survivors are valued in direct proportion to the

rate at which they (i.e. Y1  and Y2) destroy value of the friendly forces

(i.e. (43) holds). Although it is not impossible for it to be optimal for W

to divide his fire between Xi and Z or X1,X2, and Z for a finite inter-,

val of time, we intuitively feel that this is an unlikely situation. For the

X1 - X2 split, we have
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y/Y 2 = a 2 c 2 P2 / (a1 clp),

and
(-4l)/(alPl) - (-<2)/ (a 2 p2 ),

with the singular control given by

S  c2/(cI + c2) + (aI - a 2)z/(c ! + C

= c /(C I + c 2 ) " (a2 - c)z/(C1 + c'), (81)

0< OS S<
1 S

The switching time T shown in Figure 8 is given by K (T - 1 = 0 where

K(T)= aiciviYi ' Te - 1) -

2 (e 1- 6T) 2 a- -)l+k a v wyk + (82)
2 e ct,k kyk )+

We also have
0

op (lcl- 02c2)p

where p = yI' Y2 . Then on the singular subarc (corresponding to the X1 - 2

split) for 0 < T < TS , we have
TJ f (aI c 2)zf T

p(T) - p e

6.10. Problem 8.

In the previous case (Problem 7) if the W fire-support units cause "linear-

law" attrition of the Z fire-support units, then we obtain Problem 8 (see (1)

and Table I). In this cqse the optimal time-sequential fire-support poli,; .,r
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W may consist of dividing supporting fires between 2 or more of the enemy units.

Details will be given in the future.

6.11. Problems 9 and 10.

These are analogues (see Table I) of Problems 1 and 2 in which the W fire-

support units cause attrition to Yi according to a "square-law" process (see

discussion of such an assumntion in Section 6.7). In this case, it is never

optimal (assuming, for example in Problem 9, that albI 0 a2b2 ) for the W fire-

support units to split their fire between Y and Y for a finite interval of

time. Details will be given in the future.

7. Consideration of Suppressive Effects of Supporting Weapsons.

Suppression may be considered to be the neutralization of a target (i.e.

degradation of its combat capability) without actually destroying it (i.e. non-

lethal effects)(see [17]). Although the objective of many fire-support missions

(see [17] for further references) is suppression, a major deficiency in evaluating

supporting weapons has been lack of mathematical modelsT of suppressive effects

[17]. In this section we will briefly sketch some models which consider suppres-

sion and provide insights into optimal time-sequential fire-sujport allocation.

These initial results are of a preliminary nature and hopefully will be refined

in the future. The modeling of suppressive effects has been referred to as being

*in an "embryonic" state (p. 7 of [17]).

Su.? ssivn m~y be modeled either descriptively or prescriptively. In gen-

eral, two ways to model suppressive effects within the context of Lanchester-

type formulations are:

iTnis includes development of a scientifically valid operational definition of

suppressicn.

A-56



(a) modify Lanchester attrition-rate coefficients to reflect degraded

fire effectiveness as more firers become suppressed,t

(b) consider combatants of a given class to be in different states (in

the simplest model there are two states: unsuppressed and suppressed)

with different fire effectiveness and vulnerability to enemy fire in

each state; this approach requires model of state transitions.

Accordingly, for purposes of fire-support allocation two ways of modeling sup-

pressive effects in Lanchester-type formulations are:

(A) degrade effectiveness of enemy fire as a function of fire effective-

ness of friendly supporting weapons,

(B) give combatant choice as to his state (posture); in simplest model,

there are two states (unsuppressed and suppressed) with the combatant

in the unsuppressed state being both more effective in his fire and

more vulnerable to enemy supporting fires.

We will briefly sketch work Plong each of these lines in the next two sections.

7.1. Suppression Modeled Descriptively as a Degradation of Combat Effectiveness.

We consider a simple model (see p. 470 of [28]) f-r the suppressive effects

of supporting fires. Let Sc dcaote the "lethality" of the W supporting fires.

S-
W al1(S C) 1

Artilery 1Ifnr(small arms)
effectiveness

'A more sophisticated approach would be to also modify the appropriate Lanchester

attrition-rate coefficients to reflect decreased vulnerability of suppressed

combatants.

ttDetails of the development of optimization reRults are omitted.
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For a "linear-law" attrition process with a constant number of W units, con-

stant rate of fire, etc., we have Sc - c lY . Assuming that suppression causes

reduction in fire effectiveness and that suppression depends on the "density of

lethality," we have

a a1 (c)

If we assume that this functional dependence is linear, then

aI  a0(1 - c sat
a=a1 ( l c I/ ),

sat

where cs denotes the level of supporting fire density at which the fire of

Y1 ceases to be effective.

Applying the above to the situation considered in Problem 2 (with ri(t),0),

sat sat
we obtain for c 1 < c2  and cI  = c2  c2  the following:

maximize I VkXk(T) I wkYk(T)
4~t) k=l k-1. YkT

with stopping rule: tf - T = 0,

subject to: dxi -  - (i - ii)aiYi,

dy,
dy = (83)- - iciYi ( 3

Xi,Y i >0, l +  2 1 , and i >0 for i 1,2,

where 0 < al I < and a2 =1 (i.e. a1c2 
= c1). le use (3) and assume that

xiT) > 0. Then when enemy forces are valued in direct proportion to the rate

at which they destroy value of the friendly forces (i.e. (43) holds), the

optimal fire-support policy is again POLICY A as given by (44). When
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W1/(alVl) > w2/(a2v2), the optimal policy is as given in Table II with F(T)

of Table III being replaced by

1(T -W T1 e-l
c c1C (7v c

and similarly for G(;p f ).

7.2. Suppression Modeled as a Rational Decision Process: A Differential Game

Model.

In this section, we will consider suppression by supporting weapons to be

the consequence of a rational decision process in which a combatant chooses his

combat posture in order to "best" attain his combat objectives. Within the

context of fire-support allocation, this may be formulated as a two-sided opti-

mization process in which the friendly forces choose their time-sequential fire-

support strategy and the enemy forces choose "posture strategies."

Let us again consider the situation of Problem 2 as shown in Figure 3. We

consider each member of the Yi force to be in either of tio states: unsuppressed

or suppressed. Let yil denote the number of Yi that are unsuppressed and Yj2

the number suppressed. Corresponding Lanchester attrition-rate coeific:ients are

denoted as aij and cij . We assume that

ai 2 = ail with 0 < a < ,

and

ci2 ' Ycil with 0 < y ,

i.e. a Yi combatant in the suppressed state is both less effective in his fire

against Xi  and also less vulnerable to the W supporting fires. Then we may obtain

the following differential game if we let W decide how to disLribute his
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supporting fires over Y1 and Y2 and let Y choose the state he is in (i.e.

either unsuppressed or suppressed):

2 ~ 2 2
maximize Minimize vx(T)- I vi y k(T))

I k-1 k-i

with stopping rule: tf - T = 0 ,

subject to: dxi -a(Y + cY 2)
dt iyil y1

dYi2

"t -i~ciYi2 - i

xi,Yij >_.0, 01 +  02 1 , 0i L- 0 ,

and -Li <-- i - U i  for i- 1,2.

Although it is probably essentially impossible to obtain a complete solu-

tion to the differential game (84), this model does provide some valuable in-

sights into when it is optimal for Yi to be suppressed or not (giving consider-

ation to the time-sequential fire-support strategy of W). Details will be given

in the future. The theory of SVIC's (see [36]) is essential for solving this

problem.

8. Discussion.

In this section we will review our above work on the determination of opti-

mal time-sequential fire-support policies in several situations of tactical interest

and discuss what we have learned about the dependence of these policies on the

functional form of the combat attrition model. In our study, we have considered
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in various levels of detail a sequence of ten one-sided, time-sequential combat

optimization problems (see Section 5). The conclusion given here are based on

comparing and contrasting the solutions to these problems. We developed solutions

to these problems by applying modern optimal control theory (see [6], [18], (24])

(assuming, if necessary, that no force level ever became zerot ).

The results presented in this appendix are of a preliminary nature, being

based on an initial examination. We have tried to consider many different problems

and versions of problems, and this has led to incomplete results due to time con-

straints. We hope to refine such results in the future. We feel that this is an

important and promising area of work and propose such further work to ONR as a

future research task.

We saw that the optimal time-sequential fire-support policy could be quite

complex for one of these problems, since if there were n types of forces on

both sides, then the optimal (closed-loop) policy could depend on as many as

(n+l) state variables.tt This may be called the (usual) "curse of dimensionality."

Thus, we saw the need for making approximations in order to simplify the optimal

policy. We accordingly stressad some simple versions of our basic problem (e.g.

Problems 2 and 3) and developed complete solutions in a few such cases and par-

tial ones in others. We would propose to ONR as a future research task the com-

pletion of this program of solving the problems in the sequence of problems given

in Section 5. When simplifying approximations are not made, it appears to be a

st:aightforward (but messy) matter to develop a numerical solution by computational

means. This may not be too convenient, however, if the optimal solution depends on

a large nunber of state variables.

This assumtion is relaxed for problems considered in Appendix C. Breakpoints
are considered for forces in these models there.

tt Essentially, time behaved as an additional state variable in these fixed-length

planning horizon problems.
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We saw that the optimal time-sequential fire-support policy is strongly

influenced by the nature of the combat attrition process. Indeed, the policy's

basic structure is different in attack and defense situations. For example,

for the enemy attack considered in Problem 3, it was never optimal t, divide

supporting fires between enemy attacking forces. When the friendly forces

attacked (again with a "linear-law" attrition process of enemy infantry units

by supporting fires), however, the optimal fire-support policy depended on

enemy troop density, and it was sometimes optimal to split supporting fires

between several enemy troop concentrations. As we had seen earlier [30], a

"square-law" attrition process for enemy infantry units leads to concentration

of supporting fires as an optimal policy, while a "linear-law" process can lead

to splitting of fires. Thus, the determination of the appropriate nathematical

description of the attrition processes (especially for supporting fires) appears

to be an important task for future work (as well as estimation of attrition-rate

coefficients).

We also obtained some insights into valuation of combat resources. When

surviving enemy target types were valued in direct proportion to the rate at

which they destroyed the value of friendly forces, we obtained a simple form for

the optimal fire-support policy which was also very intuitively appealing. Such

a simple optimal policy even resulted when there were temporal variations in the

effectiveness of enemy defensive fires (reflecting, for example, the "closing" of

one force with the other). We also examined optimal fire-support policies when

suppressive effects of the supporting weapons were additionally considered. If

enemy survivors were valued in direct proportion to their destruction of friendly

value, then the optimal fire-support policy was exactly the same for a linear de-

gradation of enemy fire effectiveness by supporting fires as for no suppressive

effects. Otherwise, the structures of the optimal policies were similar, although
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computational investigations are needed.

Thus, we see that the optimal time-sequential allocation policy for sup-

porting fires is strongly dependent on the mathematical nature of the attrition

caused by these fires. The attrition process itself depends on such factors as

target acquisition, command and control, battlefield intelligence, weapon system

performance characteristics, tactical situation, etc. Additionally, all these

determinations were made for a deterministic attrition process and perfect state

information. The effects of uncertainty on the optimal fire-support policy should

be investigated. We hope to investigate such aspects in the future.

9. Conclusions.

Based on the research reported in this appendix, we conclude that:

(1) an optimal time-sequential fire-support policy depends on the dynamics
of combat and target priorities evolve dynamical.y over the course of
battle,

(2) the nature of the attrition process (assumed to be Lanchester-type) for
a supporting weapon system has a major influence on the structure of
the optimal time-sequenticl fire-support policy as do those for other
force interactions,

(3) the optimal time-sequential fire-support policy for an attack (approach
to contact) is different in structure from that for the defense of such
an attack,

(4) a "linear-law" attrition process for a supporting weapon system against
enemy target types may lead to supporting fires being divided between
enemy targets in an optimal time-sequential fire-support policy,

(5) a "square-law" attrition process always leads to concentration of fire
on a single target as the optimal policy,

(6) judicious choice (i.e. valuation in direct proportion to their rate of
destroying friendly value) of the value of enemy survivors (computed
according to linear utilities) leads to a simple fire-support policy
that is intuitively appealing; this policy remains optimal even when
there are temporal variations in the affectiveness of enemy fire,
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(7) simple "nearly optimal" fire-support policies may be developed through
judicious approximations to the combat attrition process,

(8) if suppression is a linear function of the kill rate of the supporting
weapon system, it has no effect on the optimal fire-support policy when
enemy survivors are valued in direct proportion to their rate of de-
struction of friendly value (i.e. the optimal policy is not changed if
the suppressive effects are excluded from the model).
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APPENDIX B: An Examination of the Effect of the Criterion

Functional on the Optimal Fire-Support Policy

1. Introduction.

As we first pointed out in [16] (see also [18]), for the purposes of

military analysis, it is convenient to consider that there are three essential

parts of any time-sequential combat optimization problem:

(a) the decision criteria (for both combatants),

(b) the model of conflict termination conditions (and/or unit break-
points),

(c) the model of combat dynamics.

It is important for the riilitary analyst to understand the relationship between

the nature of system objectives and the structure of optimal (time-sequential)

combat strategies. Of particular importance is the sensitivity of the structure

of optimal combat strategies to the nature of military objectives. In a time-

sequential combat optimization problem the combatant objectives are quantified

through the criterion functional. If the optimal combat strategy (and asso-

ciated payoff) were discovered to be quite sensitive to the functional form of

the criterion functional, then one would know that great care must go into the

selection of the functional form.

lugh and Mayberry [I] have suggested t that an appropriate payoff or

objective function (in our terminology, criterion functional) for the quantita-

tive evaluation of combat stratcgies is the loss ratio (possibly calcul d

using weighting factors for heterogeneous forces). They state [11] that an

tSee [11] for a discussion of the influence of political objectives on military

objectives for the evaluation of (time-sequential) combat strategies.

tlHowever, Pugh and Mayberry [il] do not explore the consequences of various

functional forms for t,., criterion functional.



"almost equivalent" criterion is the loss difference. In this appendix we

will examine to what extent this is true. In csses of either no replacements

or a fixed-length planning horizon, it is easily seen that these criteria are

equivalent to the ratio of survivors or the difference in survivors, respec-

tively. It is such a case of no replacements that we will examine here.

Furthermore, it is of interest to consider the military worth (i.e.

utility of military resources) of survivors. In almost all the work that has

appeared in the open literature a linear utility has been assumed for valua-

tion of survivors, and some form of net military worth (i.e. the difference

between the military worths of friendly and enemy survivors) has been taken

as the payoff (i.e. criterion functional) (see, for example [91, [12j-[171,

[20]). %% One reason for assuming such linear utilities is one of mathematical

convenience: the boundary conditions for the dual variables do not depend on

state variable values (at least when no system constraint involving the state

variables is active).

The only systematic examinations of the influence of the nature of the

criterion function on the structure of optimal time-sequential strategies

known to the author are his own investigations [121-[16], [19], [20]. In [12]-

tti.[16] a linear utility was assumed for the military worth of the numbers of

%The only exception known to the author is the paper by Kawara [5] in which the
payoff is the ratio of opposing infantry strengths (measured in terms of total
numbers) at the "end of battle" (see also the differential game studied in
Appendix D of [19]).
%tA comprehensive review of pertinent literature prior to 1973 in the field of

optimizing tactical decisions (using Lanchester-type models of warfare) is to
be found in [17].

This means that the boundary conditions for the adjoint variables (at least
when no state constraint is active) are independent of the values of the state
variables. Serious computational difficulties may arise when a nonlinear utility
is assumed. The effect of assuming a nonlinear utility for military resources
upon the cvaluation of time-sequential combat strategies has apparently never
been studied.
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7I.
each surviving weapon system type, and tha criterion functional (payoff) was

taken to be the net military worth of survivors (i.e. the difference between

the military worths of friendly and of enemy forces). We then examined how

the optimal time-sequential fire distribution policy depended on the assign-

ment of these linear utilities in [12] through [16]. In other words, we

examined the sensitivity of the optimal time-sequential combat policy to para-

metric variations in the assigned linear utilities for survivors. It was

shown, for example, that the fire-distribution problems studied in [12]-[16]

all possessed simple solutions when enemy survivors are valued in direct pro-

portion to their kill capabilities (as measured by their Lanchester attrition-

rate coefficients against the (homogeneous) friendly forces).

In (19] is the only study known to the author of the consequences of

nonlinear utility for survivors. We determined (at least for the case in which

the appropriate side's (in Kawara's case, the defender) supporting weapon

system' is not annihilated) tb'. most general form of the criterion functional

which leads to optimal fire-support strategies being independent of force levels,

and we showed that the criterion functional chosen by Kawara [5] is a special

case of this. In other words, Kawara's conclusion [5] that optimal fire-support

strategies do not depend on force levels only applies to problems with the

special type of :riterion functional used by Kawara and is not true in general.

No other examination of the dependence of optimal strategies upon combatant

objectives is known to the author.

Thus, the objective of the research reported in this appendix is to

determine the sensitivity of the optimal time-sequential fire- support policy

to the functional form of the criterion functional. Clearly, this must be

tSee [22] for a brief discussion of the distinction between a "primary" weapon
system (or infantry) and a "supporting" weapon system.
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examined for a concrete problem. Consequently, our research approach is to

consider several different criterion functionals for thn same tactical situa-

tion involving a time-sequential allocation of supporting fires. The tactical

situation that we have chosen to examine is the "approach to contact" during

an assault on enemy defensive positions by friendly ound forces. Addition-

ally, we will consider an analytically tractable mathaa..uical version of this

problem (see Appendix A) so that we may make quantitative comparisons between

the optimal policies corresponding to the various criterion functionals. Corre-

sponding to each different criterion functional is a different optimization

(here optimal control) problem. Each of these has been solved, and the corre-

sponding optimal fire-support policies will be contrasted.

In this appendix three different criterion functionals are considered,

and it Is shown that the difference and the ratio of the military worths of

friendly and enemy survivors (linear utilities) as criterion functionals may

lead to exactly the same optimal policy. This is not true when we consider

the weighted average of force ratios of opposing infantry at the time that the

supporting fires are lifted as one of the criterion functionals. This objec-

tive leads to an essentially different type of optimal fire-support policy. We

have decided that the two former criterion functionals (i.e. the difference

and the ratio of military worths) are appropriate for an "attrition" strategy,

whereas the weighted average of force ratios is appropriate for a "breakghrough"

strategy. [In the latter case, the attacking force tries to overpower the

defenders at one place along a front and then pour reinforcements through the

breach in the defender's defenses in order to "penetrate" behind the enemy

lines and disrupt enemy command, control, and communications.]
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After carrying out the above research program, future research directions

are suggested. We feel that it would be very worthwhile to extend the above

study to cases of nonlinear utilities for survivors.

2. Comparison of Optimal Fire-Support Policies.

In this section we give the fire-support allocation problem for which

the optimal policy is developed according to three different criterion func-

tionals. These time-sequential fire-support policies are then compaxed.

2.1. The Fire-Support Problem.

Let us consider the attack of heterogeneous X forces against the static

defense of heterogeneous Y forces along a "front." Each side is composed of

primary units (or infantry) and fire-support units (or artillery). The X

infantry (denoted as X1 and X2) launches an attack against the positions

held by the Y infantry (denoted as Y and Y2). We may consider X and X

to be infantry units operating on spatially separated pieces of terrain. We

assume that the X1  infantry unit attacks the Y1 infantry unit and similarly

for X and Y with no "crossfire" (i.e. the X infantry is not attrited
2 21

by the Y infantry). We will consider only the "approach to contact" phase
2

of the battle. This is the time from the initiation of the advance of the X

and X forces towards the Y and Y defensive positions until the X
1 2 fesvpoiinunith

and X2 forces actually make contact with the enemy infantry in "hand-to-hand"

combat. It is assumed that this time is fixed and known to X.

The Xi  forces begin their advance against the Yi forces from a dis-

tance and move towards the Yi position. The objective of the Xi  forces

during the "approach to contact" is to close with the enemy position as rapidly

as possible. Accordingly, small arms fire by the X forces is held at a
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minimum or firing is done "on the move" to Facilitate rapid movement. It is

not unreasonable, therefore, to assume that the effectiveness of Xi fire "on

the move" is negligible against Yi. We assume, however, that the defensive

Y fire (for i - 1,2) causes attrition to the advancing Xi forces in their

"field of fire" at a rate proportional to only the number of Yi firers. Let

ai denote the constant of proportionality. It is convenient to refer to the

attrition of a target type as being a "square-law" process when the casualty

rate is proportional to the number of enemy firers only and as being a "linear-

law" process when it is proportional to the product of the numbers of enemy

firers and remaining targets. Brackney [1] has shown that a "square-law"

attrition process occurs when the time to acquire targets is negligible in

comparison with the time to destroy them. He points out that such a situation

is to be expected to occur when one force assaults another. Additionally, we

may consider the Y forces either to have no fire support units or that their

fire support is "organic" to the Y units (i.e. fire support units are inte-

grated with Yi and only those with Yi support Y).

During the "approach to contact" the X fire support units (denoted as

W) deliver "area fire" against the Yi forces. Let denote the frac-

tion of the W fire support units which fire at Yi' [We then have that

i + 2 1 and i a 0 for i = 1,2.] Then for constant there are a

constant number of fire support units firing at Yi' since we assume that the

It should be recalled that we have shown in Appendix A that such an approxima-

tion is necessary for reason2 vZ mathematical tractability in the fire-support
optimal control problem to be subsequently given.

''To be precise, one can only conjecture that such an attrition process
probably occurs under the stated conditions.

tt In other words, we assume that X's fire support units fire into the (constant)
area contaJning the enemy's infantry without feedback as to the destructiveness
of this fire.
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W fire support units are not in the combat zone and do not suffer attrition.

In this case, the Yi attrition rate is proportional to the Yi force level

(see [21]; also [4]). Let ci denote the constant of proportionality. The

combat situation is shown diagrammatically in Figure 1.

It is the objective of the X force to utilize their fire support units

(denoted as W) over time in such a manner so as to achieve the "most favorable"

situation at the end of the "approach to contact" at which time the force

separations between opposing infantries are zero and artillery fires must be

lifted from the enemy's positions in order not to also kill friendly forces.

This "situation" or "outcome" may be measured in several different ways and

is quantitatively expressed through the criterion functional (deroted as J).

Thus, we have the following optimal control problem for the determination of

the optimal time-sequential ffie-support allocation policy (denoted as *(t)

for 0 A t S T where T denotes the time of the end of the "approach to

contact") for the W fire-support units.

maximize J,
*i(t)=

with stopping rule: tf -T 0,

dx
subject to: -dj = -a~y , (1)

(battle dynamics)
dYi
-d- = c y for i = 1,2,

with initial conditions

xi(t-O) xi  and yi(t=O) yi for i - 1,2,

and

Xlx2,Yl~y2 e 0 (State Variable Inequality Constraints)

1 + 2 - 1 and i 0 for i = 1,2 (Control Variable Inequality Constraints),
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Combat

Infantry Y one

a1  1 C1  4 2 C2  a 2

alli x2  a

Infantry X1.. X2

Fire Support

Figure 1. Diagram of Fire-Support Problem Considered for

Examination of Effecc of Criterion Function on

Optimal Fire-Support Policy.
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where

J denotes the criterion functional,

xi(t) denotes the number of Xi infantry at time t, similarly for
Yi(t),

ai is a constant (Lanchester) attrition-rate coefficient (reflecting

the effectiveness of Yi fire against Xi),

ci is a constant (Lanchester) attrition-rate coefficient (reflecting

the effectiveness of W supporting fires against Yi) ,

tf (with numerical value T) denotes the end of the optimal control

problem, and

idenotes the fraction of W fire support directed at Yi"

It will be convenient to consider the single control variable * defined by

= so that *2 - (1-) and 0 -S (2)

It should be noted that for T < +- it follows that we will always

have yi(t) > 0 for i = 1,2. Thus, the only state variable inequality con-

straints (SVIC's) that must be considered are xi -0. However, let us further

assume that the attacker's infantry force levels are never reduced to zero.

This may be militarily justified on the grounds that X would not attack the

Yi positions if his attacking Xi forces could not survive the "approach to

contact." In Appendix C we consider some models in which this assumption is

relaxed and breakpoints are considered for the various forces. Unfortunately,

this leads to quite complex mathematical details.

2.2. Criterion Functionals Considered.

The three criterion functionals for which the optimal time-sequential

fire-support allocation policies will be compared are given in Table I. All
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Problem Criterion Functional, J

2
1 akxk(T)/yk(T)

k=l

2 2
2 VXk(T) - y W~k(T)

kil k I

3k I vkxk(T) /[kI wkYk(T)

Table I. Summary of Problems Considered to Study Effect of

Criterion Functional on Optimal Fire-Support Policy.
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are functions only of the various numbers of combatants at the end cf the

planning horizon (i.e. at the end of the "approach to contact" at which time

the supporting fires must be lifted for safety reasons).
2

The criterion functional for Problem 1 (i.e. J, Y (T)/Yk(T))
k=l

represents a weighted average of the force -atios of opposing numbers of

infantry in the two infantry combat zones. The rationale behind this is that

in each combat area (i.e. the area of combat between X and Yi) combat
Ii

(possibly hand-to-hand) between the Xi and Y forces will follow the
i i

"approach to contact" and the (initial) force ratio will be related to the

outcome of this subsequent combat action. The weighting factors ak  allow

one to assign relative weights to this combat between Xi and Yi in the

two combat areas.
2

The criterion functional for Problem 2 (i.e. J v x (T)
2 k-l

- wkYk(T)) represents the difference between the military worths (computed
k=l

using a linear utility for survivors) of the X and Y forces, whereas t0. one

for Problem 3 (i.e. J Vk(T) /  wkYk(T),) represents the ratio
kl k-l wkyk

t
of military warths. Both these functionals have been proposed by Pugh and

Mayberry [I1] as appropriate payoffs for the evaluation of combat strategies

and have bJen said to be "almost equivalent" (see p. 869 of [11]).

2.3. Optimal Fire-Support Policies.

In this section we give the optimal time-sequential fire-support policies

for the three problems stated in the previous section. In all cases we assume

that neither of the attacking infantry forces can be reduced to a zero force

fActually, Pugh and Mayberry [I] talk in terms jf los"--. See Section 1 above
for a further discussion of this pcint.
*ttAs shown in Table II, each of these problems corresponds to a different

criterion functional for the attackers.

B-II



level during the approach to contact. Under this condition the solutions 
t

to the three problems are given in Table II with ancillary information on

switching times being given in Table III.

Let us sketch here the proofs of a few statements made in Tables II

and III. The existence of a unique nonnegative root to F(T-T5) 0 for

w/(av I) 1 w2/(a2v2) follows from F('=0) A 0 and F'(T) > 0 V T k 0. The

f
existence of two positive roots to G(T-Tr;p f) = 0 [here the second argument,
f 2/ a 2)  a d L <  f  < f

p , is a (fixed) parameter] for w 1/(a1Vl) 1 w2 /(a 2 V 2 ) and PL < P
f

follow3 from G'T=O) > 0 for p > DL and the fact that (letting T denote

the (unique) value of T at which the global minimum of the strictly convex

function G(T) occurs) G(r=T;p ) = F() < 0 for P < PS The latter is a

consequence of ;G > 0 and G(T=TS;P =ps F(=T 0. It should be noted

ap f
that the fact That G'(=T;p ) 0 allows the parameter p to be eliminated

from G(r=T;pf). It a]so follows that there is no solution (i.e. value of T )

f f f D-CFS FF O 0
to G(T=T,;p) = 0 for p > p . The proof that - -3 = ) > 0

3 3 TS
F F-C 1 T

follows from > 0 and a < 0 (the latter holding since (e -l+ClT)

> 0).

For Problem 1 it is convenient to introduce the "local" force ratio

ri = xi/y i, which represents the ratio of the numbers of opposing infantry in

each of the two combat areas (see Figure 1). The optimal time-sequential fire-

support policy is most conveniently expressed as an open-loop control in terms

tInitial fzrce levels and the known length of the approach to contact may be

sufficient tI wiarantee this for a given set (or range of values) of Lanchcater
attrition-rate .oeffi-ients.

*ttFor a discussion o' the distinction between open-loop and closed-loop time-

sequential policies, se- [16] or [20]. For deterministic models such as the

ones under consideration, the two types of policies are well known to be

equivalent.
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Table II. Optimal Fire-Support Policies for the Three Problems.
t

PWDBLEM 1: J" ekxk(T)/Yk(T)
KI-l

For 0 6 t 9 T, optimal (open-loop) time-sequential fire-support policy is

1 for F (ro,T) 2 F2(r.T),.
#*(t'rl'r 2 1T) =

0 for F (r ,T) s F2(r2.T),

where

and rir~T - ci~i T T -~e~~id

N O. T) - mia~ ~ ~i ) (1 -± ) I C T I
r i = xiy

2 2
PROBLEM 2: J2 " Vk(T) - I kyk(T)

kIl k-l

and

PROBLEM 3: 13 " VkXk(T))/ I wkYk(T)

Nonrestrictive Assumption: w /(avl) a w /(a
1 a1 v1  v2 /( 2 v2 )

Optimal (closed-loop) time-sequential fire-support policy is
f f

PHASEI for 0 9 < tT - T 

for yl/y2 > a2 c2 v2 /(a clv 1),

c2/(ci+c2) for y1 /y 2  c2c2I 2 /(alc 1 v1 ),

0 for y1/Y2 < a2c2v2/(a1c1v1),

PHASE II for T -p fy) tf T
_*(t,L ) W T,

where f f

T S  for P 2 PS ,

f f

f
T1  for 0L' • f < f

0 for P < P

P Yll2,  and fL 2 2 •_ 1

NOTES:tt

(1) TS  is the unique nonnegative root of F(-T) m 0.

(2) For L < P < P, T is the smaller of the two positive roots of

G(T-T 0 ;P f - 0.

It is assumed that problem parameters and 'nitial force levels are such that

xi(T) > 0 for i - 1,2.

ttSee Table III for the definitione of F(T) and G(r;p f). These functions are

different for Problems 2 and 3. -13



Table III. Determination; of the Switching Times T. and r, for Problems 2 and 3.

Nonrestrictive Assumption: w I /(a v1 ) . 2-w2/(a 2v 2)

T is the unique nonnegative root of F(= ) = 0. For P < Pf < f

is the smailer of the two positive roots of G(r-, ;# ) = 0.

It hao bc.'n shown that

(a) boun us on T are given by 0 9 T < s $

(b) r# is a strictly increasing function of P for PL 36 P < P$,
(=x;f)  f f

(c) there is no root to G(=-T;P f 0 for P > P f

2 2
Fo.FPQjLEM 2: J= V kXk(T) - I wkYk (T)

k-I kc1

F(T) ft T le Je - -._ )
. .I 11VI 1 a7 , 2

G(r;P - (e -1) t-_v. a .v l It, l " v j

Bounds on T. are given by:

(a) For wl/(a V) 1/c1 ,

W1 W2 w2 w,a1 a v 'S £ 1 -

a1v1  a2v2  S ta2v2 J (aIv J

(b) For 1/c1 J W /(aV)

1 2/ vl 1 S 1 1 2 2

For PROBLEM 3: J3 = vkX(T)I /  W Y (T)_ k k k I

F(T) =T + eI
i, 1 _/-, 2,

i lil f + vacv f - 2
'(T; f -- c _1 ~3[2V2) 1a 1 vl)-,)

Bounds on T. are given by:

(a) For J3W1/(a1Vl) 1 1/cl,

(b) For 1/c1 I J3 Wl/(alv1 ), &_v_

Also 
S

'4 3J3
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of the two initial force ratios, denoted as r: m ri(t-O) for i - 1,2, and

the known length of time for the approach to contact T. This optimal fire-

support policy is graphically depicted in Figure 2. In the initial force-

ratio space, the line with equation

o a2r - r0 - a 2  (3)

2 a 1 1 iz 2 9

where

R a aalC 1/(c2a 2 c2),

2e -1

and

2 T" l I 2 I 2 (e -1-cfT) - 1 (e 2 )>,_,

tec--1c 1 2

is a "dispersal line" (see [12] or [16]) away from which all optimal battle

trajectories flow. This is shown in Figure 3. In constructing this figure,

use has been made of facts like the following: when * = 1 for 0 9 t S T

f
and r 2  0, then

r - I(c rl-al)e 1 + all[ (4)

For Problems 2 and 3, the optimal fire-support policy (expressed as a

closed loop control (see [16] or [20])) is most conveniently expressed in terms

of y1/Y2  (i.e. the ratio of the numerical strengths of the two defending

infantry forces) and T - T - t (i.e. the "backwards" time or "time to go"

.* in the approach to contact). When enemy forces are valued in direct propor-

tion to the rate at which they destroy value of the friendly forces, i.e.

wi = kaivi for i - 1,2, (5)
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0r 2

a,,

Fo r Ry r 11For r2  a1

**(t) = 0 for 09t9T

l**c= 1 for 0 tST

0

/a

NOTES: (1) R = alc/(*2a2c2).

-- 2

_2 
c T a 1e 2

-3 ( eC -i){- ( -1-c 1 T) C2 ( IcT

(4) rr xiY

Figure 2. Optimal (Open-Loo) Fire-Support Policy for PROBLEM 
1.
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the optimal fire-support policy takes a particularly simple form (denoted as

POLICY A):

POLICY A: For 0 A t 9 T,

1 for yl/Y2 > a2c2 v2 /(allv1 ),

= c2 /(ci+c 2 ) for yl/Y2  a 2c2v2 /(alclvl), (6)

0for yl/Y2 < a2c2v2 /(alc 1v.).

This is shown pictorially in Figure 4 in which optimal trajectories are traced

backwards in time. It is convenient to note that, for example, when *(r) ,

CONSTANT for 0 b T A. a, we have

P(T) = Pf exp{[ cl-(14)C2]T).

In this case, T1 a 0 (see Table II), i.e. the entire approach to contact is

"PHASE I."

When enemy forces are not valued in di.-ect proportion to the rate at

which they destroy value of the friendly forces (without loss of generality we

may assume that w1/(a 1V1) > w2/(a2v2)), the solutions to Problems 2 and 3

are considerably more complex as shown in Figure 5. As we see from Table II,

the planning horizon may be considered to consist of two phases (denoted as

PHASE I and as PHASE II) during each of which a different fire-support alloca-

tion rule is optimal. We denote this policy as POLICY B 'see Table II). During

PHASE I, POLICY A is optimal; whereas during PHASE II, it is optimal to concen-

trate all artillery fire on Y1  (which has been valued disproportionately high).

The absence or presence of PIASE II itself in the optimal time-sequential fire

support policy depends on the ratio of enemy strengths p = yl/y2. For Problem

2 the length of PHASE II (i.e. 'i) is independent of the final force levels

of the attacking infantry units (i.e. x and x 2) but depends only on
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CASE for w1 /(alvl) Y '~(aYv2 )
y1

** -1

SINGULAR SU 'ACE

c j/(c +c)

Backwrds ime, T r-
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CASE for w1 /(alvj) > w2/ (aZ 2 ).

Y1

Y2

Bacwads i,,

NOTES: (1) p =ylY

ff

(2) See Table II for definitions of p and p f

Figure 5. Diagram of Optimal (Closed-Loop) Fire-Support Policy

(POLICY B) for PROBLEMS 2 and 3 when wl/(a v1 ) >

w2/(a2v2) (not drawn to scale).
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of f f
P Y, /72 and the combat effectivenesa parameters (see equations (1)),

whereas for Problem 3 the length of PHASE I does depend directly on x and

2 ky Thus, we
xthrough the criterion functional J3 / fkY f hs,

k=i kul
see that T1 may be quite different for Problems 2 and 3 when v1 /(alvl) >

V2 /(a 2v2 ) . [At the time of the writing of this report we have not performed

computational studies to compare values of '1 for these two problems.]

2.4. .Discussion of Comparison.

In this section we will contrast the structures o! the optimal time-

sequential fire-support policies for the three problems considered above.

f fLet us recall that we have assumed in all cases that x1,x2 > 0.

For Problem I the optimal fire-support polic) is to always concentrate

all artillery fire (i.e. supportinig fires) on one of the opposing enemy infantry
f f

units. This will maximize the force ratio (i.e. xi/yi) at the end of the

approach to contact in one of the combat areas and may be considered to be a

"breakthrough" tactic. In other words, one coacentrates all fire support on

the key enemy unit in order to overwhelm it and effect a penetration.

On the other hand, for Problems 2 and 3 the optimal fire-support policy

may involve splitting of fires between the two enemy troop concentrations.

This property of the solution has been anticipated in our earlier work on the

optimal control of "linear-law" Lanchester-type attrition processes [13], !14]

(see also [19]). We may consider this policy to be an "attrition" tactic

which aims to wear down the overall enemy strength. The structures of the

optimal policies for Problems 2 and 3 are similar, although the switching times

(i.e. T and TS) may be appreciabJf different. [More computational work
S

needs to be done here, and we hope to do this in the future.] The functional

dependences of the switching times are also different. For Problem 2 the
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switchiing times (i.e. the 4-transition surface) are independent-of the

attacking force levels Zi.e. x. and 2) (as is the optimal policy itself),

whereas for Problem 3 the switching times depend on the ratio of military

worths (computed using linear utilities), i.e. J3 -l VkXk(T) / wkYk(T))

It has been shown (see 3ection 2.3 above) that - > 0 (although l& T$"

lc n Wl/ l ) /(2(a~v ) )} so that the larger that J3 becomes, the more

time is spent concentrating fire on YI

The most significant thing to be noted in comparing the optimal fire

support policies for these three problems is that the entire structure of the

optimal policy is changed by changing the criterion functional. In particular,

singular subarcs (i.e. the splitting of W's fire between Y and Y2 ) do not

appear in the optimal policy for Problem 1, even though the necessary condi-

tions for optimaliLy on singular subarcs are exactly the same in'all three of

these problems. Such singular subarcs are, of course, part of the solution

for Problems 2 and 3.

3. Development of Optimal Policy for Problem 1.

The optimal policy is developed by application of modern optimal control

theory. For Problem 1 it is convenient to introduce the force ratio in the

th combat zone ri = x /Yi . Then Problem 1 may be written as

2
maximize I akrk(T) with T specified,

i(t) k=ldrI

subject to: -j- = -ai + *iciri for i = 1,2, (7)

*l +  2 1, +i 0, and ri k 0 for i= 1,2,

where we recall (2). We also recall that we have assumed that ri > 0.
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3.1. Necessary Conditions of Optimality.

The hmiltonian [2) is given by (using (2))

. = 1(-a1 44clr1 ) + X2 (-a 2 +(l-4)c2r 2 ), (8)

so that the maximum principle yields the extremal control law

I for S(t) > O*() (9)
0 for S(t) < 0,

where S (t) denotes the #-switching function defined by

S( W c 1 r - c2x2r2. (10)

The adjoint system of equations (again using (2) for convenience) is given by

(assuming that ri(T) > 0)

1 -4C x with X (T) a for i 1.2. (11)

Computing the first two time derivatives of the switching function

S(t) = -a c x + a (12)
1 1 1 2 2 29

S (t) = a c l(cl#)-a2c2 2 (c2(-4)), (13)

we see that on a singular subarc we have [2], (61

r/a= r2/a2, (14)

a 1c111 = a2c212 , (15)

with the singular control given by

s " c2 /(Ci+c2). (16)

On such a singular subarc the generalized Legendre-Clebsch condition is

Sd2 (3dH
satisfied, since --d- = a > O.

tSee [14] for a further discussion.
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3.2. Synthesis of Extremals.

In synthesizing extremals by the usual backwards construction procedure

(see, for example, [12] or [14]) it is convenient to introduce the "backwards"

time T defined by T = T - t. Rather than explicitly constructing extremals

and determining domains of controllability (see [12], [16], [20]), it is more

convenient to show that the return (i.e. value of the criterion functional)

correiponding to certain extremals dominates that from others. For this pur-

pose it suffices to determine all possible types of extremal policies as we

will now do.

We then have that

S (T=0) 2a 2 c2(Rrf/a -r2/ 2 ), (17)

where

R =a 1a1 C/(a2a2c2
). (18)

Without loss of generality we may assume that R k 1. Then by (12) we have

0

S (T-0) a c1a1C1 - a2a 2c2 k 0, (19)

0 0
where S denotes the "backwards" time derivative S- dS d. Considering

(12) we may write

ST() = c2a2c2{R(Xi/al) - (2/a2). (2

It follows that S (T) > 0 and **(r) = 1 V T > 0 when S (T-0) a 0 for
R > 1 (also when S (T-0) > 0 for R = 1). We also have S'(T) < 0 and

0*(T) = 0 V T a 0 when S (T=0) < 0 for R = 1.

There may be a change in sign of S (T) when S (T=0) < 0 for R > 1.

In this case **(T) = 0 for 0 9 T =- T1 and then

%By an extremal we mean a trajectory on which the necessary conditions of

optimality are satisfied.
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C2T

S*(r) - 2a2c2{Rr1 W)/aI -e r2(T)/a2 (21)

where 1 denotes the smallest value of 7 such that S (r-T1) - 0. It is

clear that we must have S#(T-T 1 ) I 0. If S *(TT 1) > 0, then we have a

transition surface, and from (21) we find that

Rr1 (t1)/a1 - e 2 1 r 2 (tl)/a 2 - 0, (22)

where t T - 1. From (20) we find that

_ <L n R. (23)0 1 < c2

If S,(TU-1) - 0, the singular subarc may be entered, and then we have

T 1_ Ln R. (24)

In this case we have

f- Rrla2 /a1 + F(R)a2/c2, (25)

where rf a r (t-T) and F(R) = 1 + R(9nR-I). We easily see that F(R) > 0

for R > 1. When R = 1 we see that once the singular subarc is entered (in

forwards time), it is never exited by an extremal trajectory.

For the purposes of determining the optimal policy it suffices to

consider the follct,,ng four extremal policies.

Policy 0: **(t) - 0 for 0 A t A T, (26)

Policy 1: **(t) = 1 for 0 9 t A T, (27)

Si for 0 ": t < T - I

Policy B-B: **(t) 1 (28)
0 for T - T1  t T,

where 0 9 T < 1 n R, andtc 2

c2/(ci+c2 for 0 S t < T - Ti tTPoi cy S: **(t) 1 (29)0 2 1 2 for T - T1 39 t % T,

*tThe only extremal policies that are omitted here are those corresponding to0 0

extremals which contain a singular subarc but rl/a I # r2 /a 2 .
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where T 1 M In R and ro/a1  /a It is readily seen from (17) that
2 f

Policy 0 yields Rrf/aI k r2/a2, etc. We also note that corresponding t the

bang-bang policy (28) we have

c t
= {(clr-al)e + al}/C 1 ,

(30)

r 2 (t) = r - a2 t I k O.

3.3. Determination of the Optimal Fire-Support Policy.

As we have discussed elsewhere [13]-[16], (20], the optimality of an

extremal trajectory may be proven by citing the appropriate existence theorem

for an optimal control to the problem at hand; there are two further subcases:

(1) if the extremal is unique, then it is optimal or (2) if the extremal is not

unique and only a finite number exist, then the optimal trajectory is deter-

mined by considering the finite number of corresponding values of the criterion

functional. The existence of a measurable optimal control follows by Corollary

2 on p. 262 of [7]. In Sections 3.1 and 3.2 above, we have considered necessary

conditions of optimality for piecewise continuous controls (see p. 10 and pp.

20-21 of [10]). It remains to show that the measurable optimal control may be

taken to be piecewise continuous. This is proven by observing that if we con-

sider the maximum principle for measurable controls (see p. 81 of (10]) in

the backwards synthesis of extremals, then the optimal control may be taken to

tIt has not been possible to determine the optimality of a policy by citing one
of the many sets of sufficient conditions that are available (see [2], (141,
[20]). In particular, although the planning horizon for the problem at hand is
of fixed length, one cannot invoke the sufficient conditions based on convexity
of Mangasarian (3) or Funk and Gilbert [3] because the right-hand sides of the
differential equations (7) are not concave functions of ri and

We have taken the liberty of changing the sign of the adjoint vector of

Pontryagin et al. [10] (see p. 108 of (2]). When the admissible controls are
measurable and bounded, the Hamiltonian (8) only attains its maximum almaost
everywhere in time.

B-26



be piecewise constant (and hence pieewise continuous).t

We will now show that the optimal control must be constand. t t This, is

done by showing that the returns from both Policy B-B and also Policy S t for

a given point in the initial state space are dominated by the return corre-

sponding to a constant extremal contrul. We denote the value of the criterion

functional corresponding to Policy 0 as Jo' that corresponding to Policy B-3

as JB' etc. Then we have

j 0  0c~~4a 2(2 ~ ~ (1

rT R )T LR c Ti

Jo") + - , + 2 (31)

31.aac l R 6•1" 2 R, (32)

JB = a 2 a 2 c 2 I( ) 1r2 1 ec2Tl

R C(T-') ca_)

1 c2 )- 1 2?l)

1 -21 1 32- ~~l+ll" (I2(T-Tl)] + (33)2T

1

and

B 22 2(aI c a .c
i 3S " = 2 a2 c [ -~K" [" (a-8ek'Tl)

1 1 1)
ccc- c ii

1 This follows from the control variable appearing linearly in the Hiailtonin
(8), the control variable space being compact, and the tchig function being

continuous for 0 S t • T. The maxirnim principle (also singular control consid-
erations) then yields that the optimal control must be peicevise constant almost
eeywhere, since S4 (t) can change sign at most once. Hence, it may be con-
sidered to be piecewise constant (see p. 130 of [10)). [The author wishes to
thank J. Wingate for pointing out this type of argument.]

tThis was first conjectured by Professor Frank Faulkner.

titBy the principle of optimality (see [21) it suffices for the purpose of
showing that a Singular solution is always nonoptimal to consider a singular
extrema. which begins with a singular subarc.
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IR

where or c2/(c 1 +c2), a + 0 = 1, and K = c1c2 /(c 1+c2 ). It is convenient

to define AJ1-0 =J - J, etc., and then

- 2 r[[ ( T -1 TCT "
AJlo a 2a2c2{R[[ [e1 -(1 (e I -_-CT)_

1-0 e- 1 T 2 2T a1c)7J1

A~is=a~~c~f2)[ (R 1 -1 - (eKl 1

0T c 2 T TT

( -i - - 2][L e - 1) _ - 2_RLI-_T). S (37)

2 2 2

r 0 c l1 T C I R(T- 1 --- n + 1T ( R- l) . (7

We now state and prove Lemma 1.

LEMMA 1: Assume that T ' TI . If A Jl_0 O, then A JlB O

r PROOF:(a) We consider for t - 1

(hi> ciii. 2 2T

-2(e 2 +c 2 t-T I e -1-c 2 t)I (

ad t 1 21 0 -0 I)

In computing AJI we assume that r/a I = r2/a 2 .
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Then A31_0 20 0 F(t-=1 ) k 0.

(b) We compute that

F'(t) - R(ec e(t- 1 -) 1 (le 1 2 (e 2  -1).

dr1

(c) If cr 1  a, then - (t) ' 0 for 0 f t' t so that1 1 1, dt 1

(r1/al) (r (t )/ak) TV It follows that F'(t) k 0. If cr 1 > a1, then

F'(t) > Q. Thus, we always have F'(t) k 0 for t k T

(d) By (a) and (c), we have F(t) k 0, whence follows the 1emma. Q.E.D.

LEMMA 2: For t - T 0, we have AJo B k 0 with

& A0B > 0 for t > 0.

PROOF:

(a) We consider for tl 0

r0 rec2I t 1 Ct

+ t22 - (eCl1) 2

We observe that F(t10) = 0. 2 c2 c c2

(b) We compute that F'(t)- a [(Clr-al)e l +a}+ a2 x
Ct a ct

{roe - (e -1). Considering (22) and (30), it follows that for2 2

t 0 we have

F'(t I ) - e 21 2( c  -1) - c 2
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(c) Recalling (30) that r2/a ; tI , we have for t a 0

ec2 T 2 t-1) we he fo- 1-c t 0,

F'(te) 21 21 1 21

since for t't 0 we have g(t) ; , where g(t) - t(e 1)- (e -i-c0/c2.

This follows from g(t-O) = 0 and g'(t) ; 0 V t ; 0.

(d) Thus, F(t1) 0 V t1 2 0, whence follows the lemma. .E.D.

As an immediate consequence of Lemmas 1 and 2 we have Theorem 1.

THEOREM 1: For T - Tl > 0, we have max(J0 Jl) 1 1B with

strict inequality holding for T > T

LEMMA 3: Assume that R k 1 and T k T Then we have AJ k 0

with AJ1_S > 0 for R > 1.

PROOF:

(a) We consider for t k 0

clt
F(t) - t(Re 1-1)/c1  (Re Kt-l)/K} + R(R-0e -1 - Kt/R)/K 2

Clt

- R(e -l-clT/R)/c2 + (R in R)/(ClC 2) + (R-l)/c •

Then we b_-e

F(t=0) = R(R-1-)/K2 + (R in R)/(clc2) + (R-1)/c 2 = f(R) k 0

with f(R) > 0 for R > 1. This follows from f(R=l) = f'(R-l) 0 and

f" (R) c ) /(CC 2R).
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(b) Ccmputing FI(t) .Rc(R 1 _ Kt) Ct(c Ite Kt) :0; 0 for R t

and t > 0, we see from (a) that F(t;R) k0 with F(t;R) > 0 for R > 1.

c t K~t
(c) We now consider G(t) - (Re -1)/c1 - (R e -1)/K. It follows that

G(t-0) - 1/c 2 + R/c1 - Ra/K - g(R) k 0, since g(R-1) - 0 and g'(R) -

(l-R)/c. Also G'(t)- R(Re t0. Hence, G(t) k 0.

(d) Recalling that ro/a1 k T, we have by (c) that AJ3 _S a 2a 2c2 F(T;R) 1 0

with F(T;R) > 0 for R > 1. Q.E.D.

From Lemma 3 follows Theorem 2.

THEOREM 2: Assume that R • 1 and T k T1 . Then max(J0,J) • s

with inequality holding for R > 1.

Thus, we see from Theorems 1 and 2 that the optimal control must be

constant and equal to either 0 or 1 for 0 f. t 9 T. The results shown in

Table II and Figures 2 and 3 then follow from consideration of AJ1_0  (see

equation (35)).

4. Development of Optimal Policy for Problem 2.
2

In tbt4 case we consider (1) with the criterion function J2 - k vkxk(T)2 2 k-i

- ~ wkkY(T). Thus, for this problem the state space (considering time to be
k-l

an additional state variable) is five dimensional.

4.1. Necessary Conditions of Optimality.

The Hamiltonian [2] is given by (using (2))

2

H =- paiyi - qlclYl - q2 (l-)c 2 y2 , (38)
iB3
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so that the maximum principle yields the extremal control lar;

1 f for So(t) >04* Wt (39)
0 for S,(t) < 0,

where S,(t) denotes the f-switching function defined by

SW(t) - cl(-ql)yI - c2(-q2)y2. (40)

The adjoint system of equations (again using (2) for convenience) is given by

(assuming that xi(T) > 0)

Pi(t) - vi  for 0 9 t A T with i - 1,2,

and (41)
*

qi - avi + ic*iqi with qi(T) - -wi for f -1,2.

Computing the first two time derivatives of the switching function

M = -aiclVlyl + a2c2v2y2, (42)

SW(t) = alcVIYl(cl ) - a2c2v2Y2(c2 (l-)), (43)

we see that on a singular subarc we have (2], [6]

/Y - a2c2v2 /(a c v1 ), (44)

(-ql) / (alvI ) = (-q2 )/ (a2v2 ), (45)

with the singular control given by

S c c2/(c1 +c 2). "(46)

On such a singular subarc the generalized Legendre-Clebsch condition is

satisifed, since dt 1VY 1 (cl+c2) > 0.

For Problem 1 it was convenient to consider a "reduced" state space of

t,rI = x1 /yI, and r2, while for Problem 2 we considered the "full" state

space of t, xI, x2, YI' and Y2 ' It seems appropriate to point out the
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- 07 ----.

corresponding relationship between the adjoint variables in these two state

spaces. This is easily seen by considering the optimal return function (see

[2]), W, and the following transformation of variables

tf=it,

(47)
rixi/yi for i = 1,2.i

W =W 3ri

Then we have, for example, piMt= 9 xt r i so that we obtain

Pi = Xi/Yi and qi = -riX 1 /yi for i - 1,2. (48)

It seems appropriate to point out that alternatively Problem 1 could have been

solved in the "full" state space of t, x1, x2, y', and Y2' while Problem 2

cannot be solved in the "reducrd" state space. The latter follows from consid-

eration of (41) and the requirement (see (48) above) that pi /q = -1/ri must

hold in order for the transformation (47) to be applicable.

4.2. Synthesis of Extremals.

In synthesizing extremals by the usual backwards construction procedure

it is convenient to consider

f
w aw wf - f / (49) 1

S (T=O) a= - (ayv) (49
1 a2c2v2y2  22 11

and

00

S (T) = al1ClIV lY1 - a 2 c2 v2Y21 (50)

where T denotes the "backwards" time defined by - - T - t and S denotes

0

the "backwards" time derivative S = dS/d. We will omit most of the tedious

details of the synthesis of extremals because they are very similar to those

given in [1']. Without loss of generality we may assume that w1/(aIv

w/(a_ and then there are two cases to be considered:
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(I) w/ (alv1 ) - v2 /(a 2v2 ),

wIT /(aMv) > 2(aYv2)

CASE I: wl/(a v1  w2, (a 2 i.e. . kav for 1- 1,2.

In this case (49) becomes
f f f

S (T=O) ac2v2y 2 (wl/(alvl))allvl 2222 - ,
2 2 1 2Tv,,.cv,~cy2

whence follows the synthesis of extremals shown in Figure 4.

CASE II: w.1/(a_ ) > w2 V2

In this case it follows from (39), (49), and (50) that for pf yf/Y f

a2c2v2 /(a1cv I) we have S (T) > 0 and **(T) = 1 for all T > 0. Since
f a 2 c2 v2 Iw2 W 1v

S (T-0) f. 0 " Sc(T=O) < 0, it follows that for p 9 l&l av

we have S*(r) < 0 and *(T) - 0 for all T > 0.

There may be a change in sign of S (T) for c2w2/(clwI ) < Pf <

a2c2v2/(alClVl). In this case 0*(T) = 1 for 0 9 T 9 T and then

S*(T =1) fo 0 ' (e )P5()f 1v~~{i (e l-l) (acvl - T + a 2cv 1  1  - (;-).(51)S T 2c2v2Y 2 c Vac (1

1 2 2 2 a2c2 2  1 1 2 2

It is clear that we must have S(T=r1) 0. If S (T=T 1 ) < 0, then we

have a transition surface with TI  (denoted as T ) given by the smaller

of the two positive roots of G(T=T ;pf) = 0, where G(;p f) is given in
a

Table III. If S#(T=TI) = 0, the singular subarc may be entered, and then

we have that T (denoted at TS) is given by the unique nonnegative root

of F(T S) 0, where F(T) is given in Table III. We denote the corre-

f f f 'fsponding value of P as PS  Then there is no switch in 0* for P > PS.

We state this as Theorem 3.

f f
THEOREM 3: P*(T) = 1 for all T -0 when p > ps.
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ff fPROOF: Immediate by G(T-=Ts;p =ps) = F(r=TS) 0 and 3G/ap > 0, since then

f f fthere is no solution to G(r-rI;p ) = 0 for p > PS. Q.E.D.

The bounds on T shown in Table III are developed as follows. First
-c T

assume that wl/(alv1 ) 9 1/cI. "e consider F(r) = T + (l/cl-wl/(alvl))e

- (l/c1-W2/(a2v2)). Then clwl/(alvl) Z. F'(T) 9 1 and F"(T) k 0 for

w1 /(alv_) 1 i/c1 , whence follow the bounds shown in Table III. Other develop-

ments ai;e similar.

The above information immediately leads to the extremal field shown

in Figure 5 (see also Tables II and III).

4.3. Determination of the Optimal Fire-Support Policy.

The optimality of the extremal fire-support policy developed above

follows according to the reasoning given in Section 3.3 by the uniqueness of

extremals.

5. Development of Optimal Policy for Problem 3.

In this case we consider (1) with the criterion functional

2

4.1. Necessary Conditions of Optimality.

The necessary conditions of optimality for Problem 3 are the same as

those for Problem 2 except that the boundary conditions for the adjoint variables

are different. Thus, (38) through (40) again apply to Problem 3. The adjoint

system of equations (again using (2) for convenience) is given by (assx-.ing

that xi(T) > 0)

Pi) = vi/D for 0 s t :; T with i = 1,2,

and (52)
• *

q= aipi + 4icq i with qi(T) = -wiJ3/D for i = 1,2,
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2

where D= 2 1wkk(T).
k-i

Computing the first two time derivatives of the switching function

(t) -a c1 lPly + a2c 2P2y2 , (53)

S = alclPlYl(c 1 a) - 2222(c2(1-0)). (54)

we find that (44) through (46) again hold on a singular subarc. On such a

singular subarc the generalized Legendre-Clebsch condition is satisfied, since
__ d2 li

ffi alclvlYl( C+c 2 )/D > 0.

5.2. Synthesis of Extremals.

The synthesis of extremals is essentially the same as for Problem 2

(see Section 4.2 above) except that we have

f

--=O) a , v 1 (55)
3J'2 2 2J2 a

a2 c2v 2y 2
and

(T) = (a 1c1 vlYl-a 2c2v 2Y2 )/D. (56)

It follows that

+ J(alclVlYl(c)-a 2c2v2y2 (a))do}/D. (57)

0

5.3 Determination of the Optimal Fire-Support Policy.

As for Problem 2, the optimality of the excremal Fire-support policy

developed above follows according to the reasoning given in Section 3.3 by

the uniqueness of extremals.
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6. Future Research Directions.

In this section we discuss possible future research suggested by the

work reported in this appendix. First of all there rmaiins computational

work to be done on Problems 2 and 3. It should be recalled that in Figures 2

through 5 we qualitatively sketched the optimal fire-support policies for

Problems 1 through 3. It was not possible, however, at this time to report

actual numerical computations. We would recommend doing this in the future.

Of particular interest would be the comparison of switching times in the

optimal fire-support policies for Problems 2 and 3 for wl/(alvl) > w2 /(a 2 v 2 )

to see how model parameter values and force levels affect the timing of

changes in fire distribution.

Secondly, it is of interest to study the dependence of the structure

of the optimal time-sequential fire-support policy for the W fire-support

units (see Figure 1) upon the nature of the criterion function J (
T f f

where 4 denotes (xl,X2) with xi = 1l(T), etc. In the work at hand we

have examined the consequences for optimal fire-support allocation of several

%urctional forms for the criterion functional. Based on this work it appears

worthwhile to examine other functional forms for Q(4, ). It seems reason-

able on military grounds to require that

a f f

-1 > 0 and -Q < 0 for all x,yf 1  0.
f f f •
i

Furthermore, one might postulate either of the following functional forms for

Q(xfyf) :

(a) Q(x Xf)= F(f-

or

*tPugh and Mayberry [11] have suggested using the ratio of aggregated force

values.
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(b)

It is of interest to study cases in which F (and/or G) is a

.(A) concave function,

or (B) convex function,

or (C) quasi-concave function,

or (D) quasi-convex function.

To give a concrete example, as a representative concave function one might

consider
f

2 y f
G(Xf) = 1 i(1-e- )/ai .

After the dependence of che structure of the optimal time-sequential

fire-support policy upon the functional form of the terminal return

has been studied for the above problem (1), it would seem appropriate to

consider a problem like a one-sided version of the "Tactical Air-War Campaign"

(see Appendix E of [18]) or the Isbell-Marlow fire-distribution problem (see

112], [201). Such a research program would lead to a better understanding

of the effects on optimizing tactical decisions of the quantification of mili-

tary objectives and of the valuation of military resources. This in turn

would result in a better understanding of the optimization of combat dynamics.

In particular, this would hopefully lead to a better understanding of quanti-

tative justification for time-sequential fire-support allocation rules in

terms of different quantifications of military objectives.

7. Discussion.

In this section we will discuss what we have learned about the dependence

of the structure of optimal time-sequential fire-support policies upon the
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quantification of military objectives. We studied this dependence by considering

three specific problems (each corresponding to a different quantification of

objectives (i.e. criterion functional)) for which solutions were developed.

We have pointed out above (see Section 2.4) the need for future comucational

work on these problems. Thus, our remarks here must be limited to a qualita-

tive comparison of the optimal fire-sapport policies.

The most significant finding is that essentially the entire structure

of the optimal time-sequential fire-support policy may be changed by changing

the quantification of military objectives. We feel that there are basically

two types of military strategies: (1) obtain a "local" advantage and (2)

obtain an "overall" advantage. The criterion function for Problem 1 (i.e.
2

Jl u kk(T)/yk(T), a weighting of force ratios in the two separate combat
k i

areas) reflects the striving to attain a "local" advantage (referred to above

as a "breakthrough" tactic). The corresponding optimal fire-support policy

was to concentrate all supporting fires on one of the enemy units (the quanti-

tative determination of this is given in Table II) for the entire period of

fire support.

On the other hand, the criterion functionals for Problems 2 and 3
2 2

(i.e. J2  k vkx.k(T) - wkYk(T), the difference between overall military

worths (computed assuming linear utilities) of forces at the time when support-
(k= 2 wkYk(T)J terai

ing fires must be lifted, and J vkXkw ()) the ratio
k i k-i

It should be pointed out that perfect information has been assumed for the j
state variables (i.e. enemy force levels). In the real world where this
assumption may not hold, this policy need not be optimal. Other factors that
would temper the use of such a policy in the real world are (1) the need to
"pin down" enemy forces with supporting fires (i.e. suppressive effects) and
(2) the giving of information to the enemy as to exactly where his defenses

will be attacked by the concentration of preparatory fires.
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of overall military worths) reflect the striving to attain an "overall"

advantage (referred to above as an "attrition" tactic which aims to wear down

the overall enemy strength). The corresponding optimal fire-support policies

for Problems 2 and 3 were qualitatively similar and could involve a splitting

*of supporting fires between the two enemy troop concentrations. This property

of the optimal fire-distribution policy is not present in the solution to

Problem 1 and was anticipated in our earlier work on optimal fire distribution

against enemy target types which undergo attrition according to a "linear-law"

process (see Section 2.1 above) [13], [14]. The criterion functional for this

earlier work was the difference between overall military worths of survivors.

Thus, we see that the nonconcentration of fires on particular target types is

characteristic of optimal time-sequential fire distribution over enemy target

types which undergo attrition according to a "linear-law" process with the

objective of attaining an "overall" advantage.

We saw that the structures of the optimal time-sequential fire-support

policies for Problems 2 and 3 were qualitatively similar, although the timing

of changes in the allocation of supporting fires could be appreciably different.

Additionally, the functional dependencies of these switching times for the two

problems were different. On thL other hand, for the particular valuation

(computed according to linear utilities) of forces in which each enemy target

type was valued in direct proportion to its rate of destruction of value of

the opposing friendly forces, the optimal policies were exactly the same for

both problems (see Table II). In this case the optimal fire-support policy

took a particularly simple form (see Policy A as given by (6)).

When enemy survivors were not valued in direct proportion to their rate

of destruction of friendly value, the optimal policy was more complex (see
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Tables II and III or Figure 5). In this case for purposes of describing the

optimal fire-support allocation rule, the planning horizon could be considered

to be divided into two phases. Moreover, the lengths of these two phases

depended on different factors for these two problems. When the planning

objective was the maximization of the difference in total military worth of

the two forces at the end of the "approach to contact," the length of, for

example, PHASE II depended only on the attrition-rate coefficients and enemy

force levels and was independent of the attacking-force force levels. However,

when the ratio of the total military worths of the two forces was considered

(i.e. for Problem 3), the length of PHASE II also depended directly on the

attacking friendly force levels.

Thus, we see that (at least for the relatively simple fire-support

allocation problem considered here) the nature of the optimal time-sequential

allocation policy is strongly influenced by the quantification of military

objectives. We hope that as a result of our investigation reported here a

better understanding of optimal time-sequential fire-support strategies (in

particular, how they depend on combatant objectives) has been developed. We

conclude that more work needs to be done on the identification of criteria for

making tactical decisions and on the quantification of such criteria. We

would propose to ONR for future research the further study of the influ.nce

of different quantifications of military objectives on optimal time-sequential

fire-support strategies.
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APPENDIX C: Optimization of Time-Phased Combat

1. Introduction.

In this appendix we will briefly consider methodology for the development

of optimal time-sequential fire-support policies when there are different combat

dynamics (i.e. Lanchester-type equations) in different "phases" of a battle.

We will consider cases in which the system equations (i.e. the right-hand sides

of the differential equation combat model) are discontinuous at an interior

point of the planning horizon det.,rmined by a given condition on the state

variables being satisfied (see pp. 104-105 of [11). We have chosen to call

this situation "time-phased" combat. Such a situation occurs when a breakpoint

(determined by a given condition between the state variables being satisfied)

is reached.

We will briefly outline how to determine the optimal time-sequential

policy (see pp. 104-105 of [1]) for such a model, We will present some pre-

liminary results here and would propose to ONR the further study of these

problems as a future research task. We will consider the optimal allocation

of supporting fires for an assault by friendly infantry forces within the con-

text of the scenario previously described in Appendix A. Two situations that

we will consider here are

(a) breakpoint for the defenders,

(b) breakpoint for the attackers.

2. Breakpoint for Defenders.

Let us consider the attack by heterogenecus X ground forces (infantry)

upon the static defensive position of heterogeneous Y ground iorces along

a "front." The basic scenario of this situation has been described in detail



in Section 6.2 of Appendix A and need not be repeated here. The combat

situation is shown diagrammatically in Figure 1.

If we consider "breakpoints" for the defending ground combat units,

then our basic cimbat optimization problem becomes

2 2
maximize { -t wkyk(t A,

fi(t) k- t kul

with stopping ruLe: tf - T = 0,
i

dxi -aiyi for > YBP

subject to:
(battle dynamics) dt ifo i BP'

dY i

d-t iciYi for i = 1,2,

xi,yi 0 (State Variable Inequality Constraints)

i + 02= 1 and 1 0 for i = 1,2 (Control Variable Inequality Constraints),

wietre all symbols are as defined in Appeudix A (see Section 4 of Appendix A).

It will be convenient to consider the single control variable 4 defined by

1 so that 02 = (1-) and 0 1 4) . (2)

For T < +w it follows that we will always have yi(t) > 0 for i - 1,2.

Thus, the oaly state variable inequality constraints (SVIC's) that must be con-

sidered are xi - 0. However, let us further assume that the attacker's infan-

try force levels are never reduced to zero. This might be militarily justified

on the grounds that X would never attack the Yi position if his attacking

Xi forces could not survive the "approach to contact." Moreover, we will

relax this assumption in the next section.

tIn other words, a defending unit becomes ineffective upon reaching a given

force level.
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Combat

Infantry Y Y9Zone

a I  c I  2c a 2

xQx2
Infantry ,X

Fire Support

w

Figure 1. Diagram of Time-Sequential Fire-Support Problem

for an Attack of Friendly Forces.
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Let us now briefly outline the necessary conditions of optimality (see

[1], [3], or [5]) for the above optimal control problem (1). We will see

that the basic structure of the optimal time-sequential fire-support policy

developed in Section 6.2 of Appendix A is modified "near a breakpoint." We

hope to give a more complete treatment of such problems in the future.

For convenience, let us focus on the case in which Y reaches its

"breakpoint." This happens at t 1 when

vr (i) 1ltlo t . (3)
1 YBP

In the development of necessary conditions of optimality it is convenient to

define two phases of combat: PHASE I during which yi > y for i = 1,2,SYBP

1 2
and PHASE II during which y1 Z yBP and y2 > YBP" We denote the Hamiltonian

H (1) (2)
of PHASE I as and similarly for H

During PHASE I the Hamiltonian is given by [1] (using (2))

(1) 2
H = Pi - q 1 clYl - q2 (l-O)c2Y2, (4)

i=l

so that the maximum principle yields the extremal control law

1 for S (t) > 0,

4 *(t) = '(5)

0 for S (t) < 0,

where SW(t) denotes the P-switching function defined by

S(t) = c 1 (-q 1 )y 1 - c2(-q2)y2. (6)

The adjoint system of equations for th.. dual variables (again using (2) for

convenience) is given by (assuming that xi > 0)

Pi(t) = vi for 0 s t T,

and (7)
qi = aivi + 4iciqi with qi(T) = -wi for i = 1,2.
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Computing the first two time derivatives of the switching function (6)

SW(t) -alclvlyI + a2 c2 v2y2, (8)

S,(t) = alclvlYl(Cly ) - a2c2v2y2(c2(l-*)), (9)

we see that on a singular subarc we have [1]

yl/Y = a2c2v2/(alClVl), (10)

(-ql)!(alv1 ) = (-q2)/(a2v2), (11)

with the singular control given by

2S = c2/(c1+c2)
"  (12)

On such a singular subarc the generalized Legendre-Clebsch condition is
_L d2 M ~

satisfied, since ao t 0 = a1c1v lyl(c+C 2) > 0.
1 an 22

During PHASE II when Yl BP Yand 2  the Hamiltonian is given

by

H(2 ) = -P2a2Y2 - qlclYl - q2(l-f)c2y2. (13)

The maximum principle again yields the extremal control law (5). The adjoint

system is given by (assuming that xi > 0)

Pi(t) = vi for 0 A t T,

q= q cq with ql(T) -w ,  (14)

and
. *

q2 a2v2 + (l-4 )c2q2  with q2(T) 2"

Computing the first time derivative of the switching function (6)

S(t) = -a2c2v2y2 < 0,

we see that singular subarcs are impossible during PHASE II.
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At a juncture (defined by (3)) between the two "phases" of battle, we

have (see pp. 104-105 of [1])

(-q1(t1)) = (-q 1 (t )) + , (15)

q2 (t 1 ) - q2 (t ), (16)

and

P1(t1) = Pl(t4) for i 1,2. (17)

The condition that H (I') (t1 ) = H(2) (tt) (recalling our assumption that

x1 (T) > 0) yields

**l)S( 1 (t 1)S (t 1  + a lvlY1 > 0, (18)

so that

= and S (t 1 ) > 0. (19)

We also obtain from (6), (15), and (16) that

+
S (tI) = S,(t1 ) + c yl . (20)

By (18), (19), and (20) we have

+ +10( } 0
yl (c aV) = -S (t ){l-*(t

so that

a aVl/CI > 0. (21)

From (15) and (21) we see that the value of members of the Y force is

decreased when the unit becomes "ineffective,"

Thus, we have proven

THEOREM 1: In the case in which the Y forces reach their

"breakpoint" and become ineffective, the optimal time-

sequential policy for W is to concentrate all

supporting fires on Y (at least for some time

immediately preceding the reaching of the "breakpoint").
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In other words, the singular subarc is nonoptimal for reaching the Y

"breakpoint." Militarily this means that all supporting fires are concen-

trated on Y1 in order to make the unit "break" even when the W fire-

support units cause attrition to Y according to a "linear-law" process.

Thus, we have another (see [9]) quantitative justification of one of the most

significant and oft-quoted of Napoleon Bonaparte's sayings (see p. 117 of [4])--

"The principles of war are the same as those of a siege; fire must be concen-

trated at one point."

3. Breakpoint for Attackers.

We will now consider the case in which one of the attacking units

"breaks." Let us consider the same scenario as considered in the previous

section. We assume that when the attacking Xi  force reaches its "break-

point," it abandons the attack and withdraws at a rate ri until it totally

disengages the Yi force. Then our combat optimization problem becomes

2 2
maximize { Vkxk(tf)- wkYk(tf)1,

YO k-l k=l

with stopping rule: tf - T = 0,

i
subject to: -aiYi  for xi > xBP,

dx i i

-- = "aiYi - ri for 0 < xi S x

0 for xi  01

dYi
yi

- -iciyi for i = 1,2,

XiY i k 0, 'i 
+  2 l 1, and k 0 for i = 1,2.

tDuring this disengagement time, the fire effectiveness of the defending Yi
force is modified by the factor a.

#tWe assume that X will not launch the attack if both his unics will be

repulsed by the Y forces.
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We observe that the system dynamics are :'i *hat the SVIC's are always

satisfied. As above, it will sometimes be convenient to consider the single

control variable * defined by (2).

Let us now briefly outline the development of the necessary conditions

of optimality for the above optimal control problem (22). We will see that

the optimal time-sequential fire-support policy depends on the "outcome" of

battle and that "local optima" are yielded by the necessary conditions. We

hope to give a more complete treatment of such problems in the future. For

now we will partially synthesize extremals in one special case.

For convenience, let us focus on the case in which X reaches its

"breakpoint." This happens at t1 when

(i = X(tl) xBP . (23)

The disengagement of the X forces becomes complete at t2 defined by

(2) = xI(t 2) = 0. (24)

Consequently, in the development of necessary conditions of optimality it is
4, i

convenient to define three phases of combat: PHASE I durii" which xi > XBp
1 2

for i = 1,2, PHASE II during which 0 < x . X and x > x2p, and
1 BP 2 BP'an
2

PHASE III during which xI = 0 and x2 > xBp. We denote the Hamiltonian of

PHASE I as H() and similarly for H (2) and H( 3)

During PHASE I the Hamiltonian is given by [1 (uqing (2))

2

H = - y i - ql~clYl - q2(l- )cy 2. (25)
i=l

The maximum principle again yields (5) as the extremal control law, and the

adjoint equations are
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p1 (t) constant,

and (26)

q aiP 1 + *1 c iq with q1 (T) - "i for 1 1,2.

Computing the first two time derivatives of the switching function (6)

W - -alcipl y1 + a2c2p2y2 , (27)

S*(t) a c <ply1 (c1 *) - a2c2P2Y2(C2(1-)), (28)

we see that on a singular subarc we have

y11Y2 = a2c2p2/(alclP), (29)

(-q1 ) / (alp,) - (-q,)/(a 2P2), (30)

with the singular control given by

's ' 1 / 2)" (31)

On such a singular subarc the generalized Legendre-Clebsch condition is
a !d2 a

satisfied, since t = aRcaPy (cl+c2) > 0.
1 2During PHASE II when 0 < x1 9XBP and x2 > XBP the Hamiltonian is

given by

H (2) = -pl( alyl+rl) - P2a2Y2 - q1$clyl - q2 (1-)c 2y 2. (32)

The maximum principle again yields the extremal control law (5). The adjoint

system is given by

Pi(t) = constant,

-;I = a lPl + *c1q1  with q1 (T) = -Wi, (33)

and

q = a2P2 + (I-0*)c2q2  with q2 (T) = -w2.
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Computing the first two time derivatives of the switching function (6)

S (t) - -aa lcply + a 2 c 2p 2y 2 , (34)

So(t) = aalclPlYl(c 1) - a2c2p2y2(c2(l-*)), (35)

we see that on a singular subarc we have

yl/Y2 a2c2P2 /(aalclP1 ), (36)

(pql)/(aalpI ) - (-q2)/(a2P2), (37)

with the singular control again given by (31). The generalized Legendre-

Clebsch condition is readily seen to hold.

At juncture time t1  (defined by (23)) between PHASE I and PHASE II

of battle, we have (see pp. 104-105 of [1])

pl(t1 ) = pl(tt) + , (38)

P2 (tl) = p2 (tl), (39)

and

q i (t = qi(tl) for i 1,2. (40)

The condition that H( 1) (tl) = H( 2 ) ( t i) yields

Pl(tl){rl/(alyl)-(l-)1. (41)

2
During PEASE III when xI = 0 and x2 > XBp the Hamiltonian is given by

H(3 ) = _P2a2Y2 - ql~clYl - q2(l-0)c2Y2, (42)

with the maximum principle again yielding the extremal control law (5). The

adjoint equations are

pi(t) = constant,

q c1q1  with ql(T) = -w1  (43)
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and

q a2P2 + (1-0)C2q2 with (T) 2

Singular subarcs are impossible, since SW(t) U -a2c2P2Y2 < 0.

At juncture time t2  (defined by (24)) between PHASE II and PHASE III

of battle, we have

Pl(t2) = , P2(t2)= P2 (t2), and qi(t 2)= qi(4) for 1 U 1,2. (44)

The condition that H 2 ) (t9) H 3 ) (t ) yields

12(t2 0. (45)

In synthesizing extremals by the usual backwards sweep method (see [7]

or [8]), there are three cases to be considered (we always assume that

x2  x2 (T) > 2 so tha P2(t) = v2):

f= f2 > tt

f 1
(2) 0 < x, xBp,

f(3) x 0.
x1 .

f: 1For Case 1: x>l X the optimal fire-support policy is the same as

that for Problem 2 of Appendix A.

f 2For Case 2: 0 < Xl_ _ p we have pl(t) =v I  The battle consists

of both PHASE I and also PHASE II. Singular subarcs are possible during both
phases. The relative position of "singular surfaces" in the state space for

the two phases of battle depends on the parameter a (e.g whether or not

a > 1). Details may be worked out by the usual backwards sweep method.

For Case 3: x f = 0, we have Pl(t) = 0 for 0 r t I T. The battle

consists of PHASE 1, PHASE II, and PHASE III. There are no singular subarcs
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f
in the solution when x = 0. If w i = kaivi (i.e. enemy survivors valued in

direct proportion to their rate of destroying friendly value), then

S (T=O) = ka Clvly 2 {yf/Y 2-a2c2v2/(alclvl. (46)

The usual a-guments now yield that

f f f
**(t) =0 for 0 t 9 T when Yl/Y2 PD

ff f f
wherc p = a2c2v2/(a1c1v1 ). For yI/Y 2 > OD we have

*() = 1 ror 0 9 T < TV

where T = T - t denotes lie "time to go" in the battle and

S 1 kaCV/(a2c v2){yl/Y2-a2c2v2/(alClVl 1 . It may be shown that

f
T t2 *x1 =0, where t2 is given by

axl + (l-)x Bp r1 (t2-t) (l-e-C )cta1y/c1  0,

and
I 9. a Y l0t= Li _n _ -_o__

1c1 1l1xBP)

Thus, we see that the structute of the optimal time-sequential fire-

support policy depends on the "outcome" of battle (e.g. the value of x).

The dependence of the structure of the optimal policy on initial force levels

is complicated and remains to be determined in the future. We have seen that

one must consider "breakpoints" and different combat dynamics in different

phaseb -f battle to insure "realistic" combat situations (such as force levels

remaining nonnegativE). The determination of the optimal time-sequential fire-

support policy for such problems is much more complicated than that for prob.

lems previously considered by us. We hope to give this important subject

further consideration in the future.
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4. Summary.

In this appendix we hay britfly considered the determination of

optimal time-sequential fire-support strategies for battles with different

coubat dynamics in different "phases" of battle. An important instance in

which one must consider such a model is when "breakpoints" (see [2] or [6])

are considered for units. In such cases we have seen that the determination

of the optimal policy is much more complicated than that for the problems

that we have previously considered (see, for example, [7], [8], [9]). More-

over, the structure of the optimal policy was different for the problems

considered here than that for the version previously considered in Appendix A.

Thus, the models considered here do lead to a significantly different

structure for optimal time-sequential allocation policies than those we have

previous considered. "Global" considerations (i.e. which end states of

battle can be reached by extremals from a given point in the initial state

space) appear to be especially important in developing solutions to such

problems. We have only bri-°fly considered these problems here and hope to

give them more detailed treatment in the future.
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